MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcov Structured version   Unicode version

Theorem cmpcov 17444
Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.)
Hypothesis
Ref Expression
iscmp.1  |-  X  = 
U. J
Assertion
Ref Expression
cmpcov  |-  ( ( J  e.  Comp  /\  S  C_  J  /\  X  = 
U. S )  ->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s
)
Distinct variable groups:    J, s    S, s
Allowed substitution hint:    X( s)

Proof of Theorem cmpcov
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . 4  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  S  C_  J )
2 ssexg 4341 . . . . . 6  |-  ( ( S  C_  J  /\  J  e.  Comp )  ->  S  e.  _V )
32ancoms 440 . . . . 5  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  S  e.  _V )
4 elpwg 3798 . . . . 5  |-  ( S  e.  _V  ->  ( S  e.  ~P J  <->  S 
C_  J ) )
53, 4syl 16 . . . 4  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  ( S  e.  ~P J  <->  S 
C_  J ) )
61, 5mpbird 224 . . 3  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  S  e.  ~P J )
7 iscmp.1 . . . . . 6  |-  X  = 
U. J
87iscmp 17443 . . . . 5  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. r  e.  ~P  J ( X  =  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s
) ) )
98simprbi 451 . . . 4  |-  ( J  e.  Comp  ->  A. r  e.  ~P  J ( X  =  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s
) )
109adantr 452 . . 3  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  A. r  e.  ~P  J ( X  =  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s
) )
11 unieq 4016 . . . . . 6  |-  ( r  =  S  ->  U. r  =  U. S )
1211eqeq2d 2446 . . . . 5  |-  ( r  =  S  ->  ( X  =  U. r  <->  X  =  U. S ) )
13 pweq 3794 . . . . . . 7  |-  ( r  =  S  ->  ~P r  =  ~P S
)
1413ineq1d 3533 . . . . . 6  |-  ( r  =  S  ->  ( ~P r  i^i  Fin )  =  ( ~P S  i^i  Fin ) )
1514rexeqdv 2903 . . . . 5  |-  ( r  =  S  ->  ( E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s  <->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s
) )
1612, 15imbi12d 312 . . . 4  |-  ( r  =  S  ->  (
( X  =  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s )  <->  ( X  =  U. S  ->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s ) ) )
1716rspcv 3040 . . 3  |-  ( S  e.  ~P J  -> 
( A. r  e. 
~P  J ( X  =  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s
)  ->  ( X  =  U. S  ->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s ) ) )
186, 10, 17sylc 58 . 2  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  ( X  =  U. S  ->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s
) )
19183impia 1150 1  |-  ( ( J  e.  Comp  /\  S  C_  J  /\  X  = 
U. S )  ->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948    i^i cin 3311    C_ wss 3312   ~Pcpw 3791   U.cuni 4007   Fincfn 7101   Topctop 16950   Compccmp 17441
This theorem is referenced by:  cmpcov2  17445  cncmp  17447  discmp  17453  cmpcld  17457  sscmp  17460  alexsubALTlem1  18070  ptcmplem3  18077  lebnum  18981  comppfsc  26378  heibor1  26510
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-in 3319  df-ss 3326  df-pw 3793  df-uni 4008  df-cmp 17442
  Copyright terms: Public domain W3C validator