MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcovf Structured version   Unicode version

Theorem cmpcovf 17454
Description: Combine cmpcov 17452 with ac6sfi 7351 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
iscmp.1  |-  X  = 
U. J
cmpcovf.2  |-  ( z  =  ( f `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cmpcovf  |-  ( ( J  e.  Comp  /\  A. x  e.  X  E. y  e.  J  (
x  e.  y  /\  E. z  e.  A  ph ) )  ->  E. s  e.  ( ~P J  i^i  Fin ) ( X  = 
U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) )
Distinct variable groups:    f, s, x, y, z, A    J, s, x, y, z    ph, f,
s, x    ps, s,
z    x, X, s
Allowed substitution hints:    ph( y, z)    ps( x, y, f)    J( f)    X( y, z, f)

Proof of Theorem cmpcovf
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 simpl 444 . 2  |-  ( ( J  e.  Comp  /\  A. x  e.  X  E. y  e.  J  (
x  e.  y  /\  E. z  e.  A  ph ) )  ->  J  e.  Comp )
2 iscmp.1 . . 3  |-  X  = 
U. J
32cmpcov2 17453 . 2  |-  ( ( J  e.  Comp  /\  A. x  e.  X  E. y  e.  J  (
x  e.  y  /\  E. z  e.  A  ph ) )  ->  E. u  e.  ( ~P J  i^i  Fin ) ( X  = 
U. u  /\  A. y  e.  u  E. z  e.  A  ph )
)
4 elfpw 7408 . . . 4  |-  ( u  e.  ( ~P J  i^i  Fin )  <->  ( u  C_  J  /\  u  e. 
Fin ) )
5 simplrl 737 . . . . . . . 8  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  u  C_  J )
6 vex 2959 . . . . . . . . 9  |-  u  e. 
_V
76elpw 3805 . . . . . . . 8  |-  ( u  e.  ~P J  <->  u  C_  J
)
85, 7sylibr 204 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  u  e.  ~P J )
9 simplrr 738 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  u  e.  Fin )
10 elin 3530 . . . . . . 7  |-  ( u  e.  ( ~P J  i^i  Fin )  <->  ( u  e.  ~P J  /\  u  e.  Fin ) )
118, 9, 10sylanbrc 646 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  u  e.  ( ~P J  i^i  Fin ) )
12 simprl 733 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  X  =  U. u )
13 simprr 734 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  A. y  e.  u  E. z  e.  A  ph )
14 cmpcovf.2 . . . . . . . 8  |-  ( z  =  ( f `  y )  ->  ( ph 
<->  ps ) )
1514ac6sfi 7351 . . . . . . 7  |-  ( ( u  e.  Fin  /\  A. y  e.  u  E. z  e.  A  ph )  ->  E. f ( f : u --> A  /\  A. y  e.  u  ps ) )
169, 13, 15syl2anc 643 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  E. f
( f : u --> A  /\  A. y  e.  u  ps )
)
17 unieq 4024 . . . . . . . . 9  |-  ( s  =  u  ->  U. s  =  U. u )
1817eqeq2d 2447 . . . . . . . 8  |-  ( s  =  u  ->  ( X  =  U. s  <->  X  =  U. u ) )
19 feq2 5577 . . . . . . . . . 10  |-  ( s  =  u  ->  (
f : s --> A  <-> 
f : u --> A ) )
20 raleq 2904 . . . . . . . . . 10  |-  ( s  =  u  ->  ( A. y  e.  s  ps 
<-> 
A. y  e.  u  ps ) )
2119, 20anbi12d 692 . . . . . . . . 9  |-  ( s  =  u  ->  (
( f : s --> A  /\  A. y  e.  s  ps )  <->  ( f : u --> A  /\  A. y  e.  u  ps ) ) )
2221exbidv 1636 . . . . . . . 8  |-  ( s  =  u  ->  ( E. f ( f : s --> A  /\  A. y  e.  s  ps ) 
<->  E. f ( f : u --> A  /\  A. y  e.  u  ps ) ) )
2318, 22anbi12d 692 . . . . . . 7  |-  ( s  =  u  ->  (
( X  =  U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) )  <-> 
( X  =  U. u  /\  E. f ( f : u --> A  /\  A. y  e.  u  ps ) ) ) )
2423rspcev 3052 . . . . . 6  |-  ( ( u  e.  ( ~P J  i^i  Fin )  /\  ( X  =  U. u  /\  E. f ( f : u --> A  /\  A. y  e.  u  ps ) ) )  ->  E. s  e.  ( ~P J  i^i  Fin )
( X  =  U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) )
2511, 12, 16, 24syl12anc 1182 . . . . 5  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  E. s  e.  ( ~P J  i^i  Fin ) ( X  = 
U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) )
2625ex 424 . . . 4  |-  ( ( J  e.  Comp  /\  (
u  C_  J  /\  u  e.  Fin )
)  ->  ( ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph )  ->  E. s  e.  ( ~P J  i^i  Fin ) ( X  = 
U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) ) )
274, 26sylan2b 462 . . 3  |-  ( ( J  e.  Comp  /\  u  e.  ( ~P J  i^i  Fin ) )  ->  (
( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph )  ->  E. s  e.  ( ~P J  i^i  Fin )
( X  =  U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) ) )
2827rexlimdva 2830 . 2  |-  ( J  e.  Comp  ->  ( E. u  e.  ( ~P J  i^i  Fin )
( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph )  ->  E. s  e.  ( ~P J  i^i  Fin )
( X  =  U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) ) )
291, 3, 28sylc 58 1  |-  ( ( J  e.  Comp  /\  A. x  e.  X  E. y  e.  J  (
x  e.  y  /\  E. z  e.  A  ph ) )  ->  E. s  e.  ( ~P J  i^i  Fin ) ( X  = 
U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706    i^i cin 3319    C_ wss 3320   ~Pcpw 3799   U.cuni 4015   -->wf 5450   ` cfv 5454   Fincfn 7109   Compccmp 17449
This theorem is referenced by:  txtube  17672  txcmplem1  17673  txcmplem2  17674  xkococnlem  17691  cnheibor  18980
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-1o 6724  df-er 6905  df-en 7110  df-fin 7113  df-cmp 17450
  Copyright terms: Public domain W3C validator