MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpfi Unicode version

Theorem cmpfi 17135
Description: If a topology is compact and a collection of closed sets has the finite intersection property, its intersection is nonempty. (Contributed by Jeff Hankins, 25-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
cmpfi  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
Distinct variable group:    x, J

Proof of Theorem cmpfi
Dummy variables  r 
v  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 3633 . . . 4  |-  ( y  e.  ~P J  -> 
y  C_  J )
2 0ss 3483 . . . . . . . . . . 11  |-  (/)  C_  y
3 0fin 7087 . . . . . . . . . . 11  |-  (/)  e.  Fin
4 elfpw 7157 . . . . . . . . . . 11  |-  ( (/)  e.  ( ~P y  i^i 
Fin )  <->  ( (/)  C_  y  /\  (/)  e.  Fin )
)
52, 3, 4mpbir2an 886 . . . . . . . . . 10  |-  (/)  e.  ( ~P y  i^i  Fin )
6 simprr 733 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =  (/)  /\ 
U. J  =  U. y ) )  ->  U. J  =  U. y )
7 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =  (/)  /\ 
U. J  =  U. y ) )  -> 
y  =  (/) )
87unieqd 3838 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =  (/)  /\ 
U. J  =  U. y ) )  ->  U. y  =  U. (/) )
96, 8eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =  (/)  /\ 
U. J  =  U. y ) )  ->  U. J  =  U. (/) )
10 unieq 3836 . . . . . . . . . . . 12  |-  ( z  =  (/)  ->  U. z  =  U. (/) )
1110eqeq2d 2294 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  ( U. J  =  U. z  <->  U. J  =  U. (/) ) )
1211rspcev 2884 . . . . . . . . . 10  |-  ( (
(/)  e.  ( ~P y  i^i  Fin )  /\  U. J  =  U. (/) )  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z )
135, 9, 12sylancr 644 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =  (/)  /\ 
U. J  =  U. y ) )  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z )
1413expr 598 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  -> 
( U. J  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z ) )
15 vn0 3462 . . . . . . . . . 10  |-  _V  =/=  (/)
16 iineq1 3919 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  |^|_ r  e.  y  ( U. J  \  r )  = 
|^|_ r  e.  (/)  ( U. J  \  r
) )
1716adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  |^|_ r  e.  (/)  ( U. J  \  r ) )
18 0iin 3960 . . . . . . . . . . . . 13  |-  |^|_ r  e.  (/)  ( U. J  \  r )  =  _V
1917, 18syl6eq 2331 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  _V )
2019eqeq1d 2291 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  -> 
( |^|_ r  e.  y  ( U. J  \ 
r )  =  (/)  <->  _V  =  (/) ) )
2120necon3bbid 2480 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  -> 
( -.  |^|_ r  e.  y  ( U. J  \  r )  =  (/) 
<->  _V  =/=  (/) ) )
2215, 21mpbiri 224 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  ->  -.  |^|_ r  e.  y  ( U. J  \ 
r )  =  (/) )
2322pm2.21d 98 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  -> 
( |^|_ r  e.  y  ( U. J  \ 
r )  =  (/)  -> 
(/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) ) ) )
2414, 232thd 231 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  -> 
( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  ( |^|_ r  e.  y  ( U. J  \  r
)  =  (/)  ->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) ) )
25 uniss 3848 . . . . . . . . . . . 12  |-  ( y 
C_  J  ->  U. y  C_ 
U. J )
2625ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  ->  U. y  C_  U. J
)
27 eqss 3194 . . . . . . . . . . . 12  |-  ( U. y  =  U. J  <->  ( U. y  C_  U. J  /\  U. J  C_  U. y
) )
2827baib 871 . . . . . . . . . . 11  |-  ( U. y  C_  U. J  -> 
( U. y  = 
U. J  <->  U. J  C_  U. y ) )
2926, 28syl 15 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( U. y  = 
U. J  <->  U. J  C_  U. y ) )
30 eqcom 2285 . . . . . . . . . 10  |-  ( U. y  =  U. J  <->  U. J  = 
U. y )
31 ssdif0 3513 . . . . . . . . . 10  |-  ( U. J  C_  U. y  <->  ( U. J  \  U. y )  =  (/) )
3229, 30, 313bitr3g 278 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( U. J  = 
U. y  <->  ( U. J  \  U. y )  =  (/) ) )
33 iindif2 3971 . . . . . . . . . . . 12  |-  ( y  =/=  (/)  ->  |^|_ r  e.  y  ( U. J  \  r )  =  ( U. J  \  U_ r  e.  y  r
) )
3433adantl 452 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  ( U. J  \  U_ r  e.  y  r ) )
35 uniiun 3955 . . . . . . . . . . . 12  |-  U. y  =  U_ r  e.  y  r
3635difeq2i 3291 . . . . . . . . . . 11  |-  ( U. J  \  U. y )  =  ( U. J  \ 
U_ r  e.  y  r )
3734, 36syl6eqr 2333 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  ( U. J  \  U. y ) )
3837eqeq1d 2291 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( |^|_ r  e.  y  ( U. J  \ 
r )  =  (/)  <->  ( U. J  \  U. y
)  =  (/) ) )
3932, 38bitr4d 247 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( U. J  = 
U. y  <->  |^|_ r  e.  y  ( U. J  \  r )  =  (/) ) )
40 imassrn 5025 . . . . . . . . . . . 12  |-  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  C_  ran  ( r  e.  y  |->  ( U. J  \  r ) )
41 df-ima 4702 . . . . . . . . . . . . . 14  |-  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  =  ran  (
( r  e.  J  |->  ( U. J  \ 
r ) )  |`  y )
42 resmpt 5000 . . . . . . . . . . . . . . . 16  |-  ( y 
C_  J  ->  (
( r  e.  J  |->  ( U. J  \ 
r ) )  |`  y )  =  ( r  e.  y  |->  ( U. J  \  r
) ) )
4342adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( r  e.  J  |->  ( U. J  \  r ) )  |`  y )  =  ( r  e.  y  |->  ( U. J  \  r
) ) )
4443rneqd 4906 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  ran  ( ( r  e.  J  |->  ( U. J  \  r ) )  |`  y )  =  ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
4541, 44syl5eq 2327 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =  ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
4645ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ~P y  i^i 
Fin ) )  -> 
( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =  ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
4740, 46syl5sseqr 3227 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ~P y  i^i 
Fin ) )  -> 
( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  C_  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) )
48 funmpt 5290 . . . . . . . . . . . 12  |-  Fun  (
r  e.  y  |->  ( U. J  \  r
) )
49 elfpw 7157 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ~P y  i^i  Fin )  <->  ( z  C_  y  /\  z  e. 
Fin ) )
5049simprbi 450 . . . . . . . . . . . . 13  |-  ( z  e.  ( ~P y  i^i  Fin )  ->  z  e.  Fin )
5150adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ~P y  i^i 
Fin ) )  -> 
z  e.  Fin )
52 imafi 7148 . . . . . . . . . . . 12  |-  ( ( Fun  ( r  e.  y  |->  ( U. J  \  r ) )  /\  z  e.  Fin )  ->  ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  e.  Fin )
5348, 51, 52sylancr 644 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ~P y  i^i 
Fin ) )  -> 
( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  e.  Fin )
54 elfpw 7157 . . . . . . . . . . 11  |-  ( ( ( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  i^i 
Fin )  <->  ( (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  C_  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  /\  (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  e.  Fin ) )
5547, 53, 54sylanbrc 645 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ~P y  i^i 
Fin ) )  -> 
( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  i^i 
Fin ) )
56 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  U. J  =  U. J
5756topopn 16652 . . . . . . . . . . . . . . . 16  |-  ( J  e.  Top  ->  U. J  e.  J )
58 difexg 4162 . . . . . . . . . . . . . . . 16  |-  ( U. J  e.  J  ->  ( U. J  \  r
)  e.  _V )
5957, 58syl 15 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  ( U. J  \  r
)  e.  _V )
6059ralrimivw 2627 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  A. r  e.  y  ( U. J  \  r )  e. 
_V )
61 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( r  e.  y  |->  ( U. J  \  r ) )  =  ( r  e.  y  |->  ( U. J  \  r ) )
6261fnmpt 5370 . . . . . . . . . . . . . 14  |-  ( A. r  e.  y  ( U. J  \  r
)  e.  _V  ->  ( r  e.  y  |->  ( U. J  \  r
) )  Fn  y
)
6360, 62syl 15 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  (
r  e.  y  |->  ( U. J  \  r
) )  Fn  y
)
6463ad3antrrr 710 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  ( r  e.  y  |->  ( U. J  \  r ) )  Fn  y )
65 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  i^i 
Fin ) )
66 elfpw 7157 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( ~P (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  i^i  Fin ) 
<->  ( w  C_  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  /\  w  e.  Fin ) )
6765, 66sylib 188 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  ( w  C_  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  /\  w  e.  Fin ) )
6867simpld 445 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  w  C_  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) )
6945ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
)  =  ran  (
r  e.  y  |->  ( U. J  \  r
) ) )
7068, 69sseqtrd 3214 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  w  C_  ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
7167simprd 449 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  w  e.  Fin )
72 fipreima 7161 . . . . . . . . . . . 12  |-  ( ( ( r  e.  y 
|->  ( U. J  \ 
r ) )  Fn  y  /\  w  C_  ran  ( r  e.  y 
|->  ( U. J  \ 
r ) )  /\  w  e.  Fin )  ->  E. z  e.  ( ~P y  i^i  Fin ) ( ( r  e.  y  |->  ( U. J  \  r ) )
" z )  =  w )
7364, 70, 71, 72syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  E. z  e.  ( ~P y  i^i 
Fin ) ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  =  w )
74 eqcom 2285 . . . . . . . . . . . 12  |-  ( ( ( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  =  w  <-> 
w  =  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
) )
7574rexbii 2568 . . . . . . . . . . 11  |-  ( E. z  e.  ( ~P y  i^i  Fin )
( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =  w  <->  E. z  e.  ( ~P y  i^i  Fin )
w  =  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
) )
7673, 75sylib 188 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  E. z  e.  ( ~P y  i^i 
Fin ) w  =  ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) )
77 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  =  ( ( r  e.  y  |->  ( U. J  \  r ) )
" z ) )  ->  w  =  ( ( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z ) )
7877inteqd 3867 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  =  ( ( r  e.  y  |->  ( U. J  \  r ) )
" z ) )  ->  |^| w  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) )
7978eqeq2d 2294 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  =  ( ( r  e.  y  |->  ( U. J  \  r ) )
" z ) )  ->  ( (/)  =  |^| w 
<->  (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
) ) )
8055, 76, 79rexxfrd 4549 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin ) (/)  =  |^| w  <->  E. z  e.  ( ~P y  i^i 
Fin ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
81 0ex 4150 . . . . . . . . . 10  |-  (/)  e.  _V
82 imassrn 5025 . . . . . . . . . . . . 13  |-  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  C_  ran  ( r  e.  J  |->  ( U. J  \  r ) )
83 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( r  e.  J  |->  ( U. J  \  r ) )  =  ( r  e.  J  |->  ( U. J  \  r ) )
8456, 83opncldf1 16821 . . . . . . . . . . . . . . . 16  |-  ( J  e.  Top  ->  (
( r  e.  J  |->  ( U. J  \ 
r ) ) : J -1-1-onto-> ( Clsd `  J
)  /\  `' (
r  e.  J  |->  ( U. J  \  r
) )  =  ( v  e.  ( Clsd `  J )  |->  ( U. J  \  v ) ) ) )
8584simpld 445 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  (
r  e.  J  |->  ( U. J  \  r
) ) : J -1-1-onto-> ( Clsd `  J ) )
86 f1ofo 5479 . . . . . . . . . . . . . . 15  |-  ( ( r  e.  J  |->  ( U. J  \  r
) ) : J -1-1-onto-> ( Clsd `  J )  -> 
( r  e.  J  |->  ( U. J  \ 
r ) ) : J -onto-> ( Clsd `  J
) )
8785, 86syl 15 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  (
r  e.  J  |->  ( U. J  \  r
) ) : J -onto->
( Clsd `  J )
)
88 forn 5454 . . . . . . . . . . . . . 14  |-  ( ( r  e.  J  |->  ( U. J  \  r
) ) : J -onto->
( Clsd `  J )  ->  ran  ( r  e.  J  |->  ( U. J  \  r ) )  =  ( Clsd `  J
) )
8987, 88syl 15 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  ran  ( r  e.  J  |->  ( U. J  \ 
r ) )  =  ( Clsd `  J
) )
9082, 89syl5sseq 3226 . . . . . . . . . . . 12  |-  ( J  e.  Top  ->  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  C_  ( Clsd `  J ) )
91 fvex 5539 . . . . . . . . . . . . 13  |-  ( Clsd `  J )  e.  _V
9291elpw2 4175 . . . . . . . . . . . 12  |-  ( ( ( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  e.  ~P ( Clsd `  J )  <->  ( ( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  C_  ( Clsd `  J ) )
9390, 92sylibr 203 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  e.  ~P ( Clsd `  J )
)
9493ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  e.  ~P ( Clsd `  J )
)
95 elfi 7167 . . . . . . . . . 10  |-  ( (
(/)  e.  _V  /\  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  e.  ~P ( Clsd `  J )
)  ->  ( (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) )  <->  E. w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin ) (/)  =  |^| w ) )
9681, 94, 95sylancr 644 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( (/)  e.  ( fi
`  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) )  <->  E. w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  i^i  Fin ) (/)  =  |^| w
) )
97 inundif 3532 . . . . . . . . . . . . . 14  |-  ( ( ( ~P y  i^i 
Fin )  i^i  { (/)
} )  u.  (
( ~P y  i^i 
Fin )  \  { (/)
} ) )  =  ( ~P y  i^i 
Fin )
9897rexeqi 2741 . . . . . . . . . . . . 13  |-  ( E. z  e.  ( ( ( ~P y  i^i 
Fin )  i^i  { (/)
} )  u.  (
( ~P y  i^i 
Fin )  \  { (/)
} ) ) U. J  =  U. z  <->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z )
99 rexun 3355 . . . . . . . . . . . . 13  |-  ( E. z  e.  ( ( ( ~P y  i^i 
Fin )  i^i  { (/)
} )  u.  (
( ~P y  i^i 
Fin )  \  { (/)
} ) ) U. J  =  U. z  <->  ( E. z  e.  ( ( ~P y  i^i 
Fin )  i^i  { (/)
} ) U. J  =  U. z  \/  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z
) )
10098, 99bitr3i 242 . . . . . . . . . . . 12  |-  ( E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z 
<->  ( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/)
} ) U. J  =  U. z  \/  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z
) )
101 inss2 3390 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ~P y  i^i  Fin )  i^i  { (/) } ) 
C_  { (/) }
102101sseli 3176 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  -> 
z  e.  { (/) } )
103 elsni 3664 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  { (/) }  ->  z  =  (/) )
104102, 103syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  -> 
z  =  (/) )
105104unieqd 3838 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  ->  U. z  =  U. (/) )
106 uni0 3854 . . . . . . . . . . . . . . . . . . 19  |-  U. (/)  =  (/)
107105, 106syl6eq 2331 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  ->  U. z  =  (/) )
108107eqeq2d 2294 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  -> 
( U. J  = 
U. z  <->  U. J  =  (/) ) )
109108biimpd 198 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  -> 
( U. J  = 
U. z  ->  U. J  =  (/) ) )
110109rexlimiv 2661 . . . . . . . . . . . . . . 15  |-  ( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } ) U. J  =  U. z  ->  U. J  =  (/) )
111 ssid 3197 . . . . . . . . . . . . . . . . . . . 20  |-  y  C_  y
112111a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  y  C_  y
)
113 0ss 3483 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  (/)  C_  U. y
114 simprr 733 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. J  =  (/) )
115114sseq1d 3205 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  ( U. J  C_ 
U. y  <->  (/)  C_  U. y
) )
116113, 115mpbiri 224 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. J  C_  U. y
)
11725ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. y  C_  U. J
)
118116, 117eqssd 3196 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. J  =  U. y )
119118, 114eqtr3d 2317 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. y  =  (/) )
120119, 3syl6eqel 2371 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. y  e.  Fin )
121 pwfi 7151 . . . . . . . . . . . . . . . . . . . . 21  |-  ( U. y  e.  Fin  <->  ~P U. y  e.  Fin )
122120, 121sylib 188 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  ~P U. y  e.  Fin )
123 pwuni 4206 . . . . . . . . . . . . . . . . . . . 20  |-  y  C_  ~P U. y
124 ssfi 7083 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ~P U. y  e. 
Fin  /\  y  C_  ~P U. y )  -> 
y  e.  Fin )
125122, 123, 124sylancl 643 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  y  e.  Fin )
126 elfpw 7157 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( ~P y  i^i  Fin )  <->  ( y  C_  y  /\  y  e. 
Fin ) )
127112, 125, 126sylanbrc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  y  e.  ( ~P y  i^i  Fin ) )
128 simprl 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  y  =/=  (/) )
129 eldifsn 3749 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ( ~P y  i^i  Fin )  \  { (/) } )  <->  ( y  e.  ( ~P y  i^i 
Fin )  /\  y  =/=  (/) ) )
130127, 128, 129sylanbrc 645 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  y  e.  ( ( ~P y  i^i 
Fin )  \  { (/)
} ) )
131 unieq 3836 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  y  ->  U. z  =  U. y )
132131eqeq2d 2294 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  ( U. J  =  U. z 
<-> 
U. J  =  U. y ) )
133132rspcev 2884 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ( ( ~P y  i^i  Fin )  \  { (/) } )  /\  U. J  = 
U. y )  ->  E. z  e.  (
( ~P y  i^i 
Fin )  \  { (/)
} ) U. J  =  U. z )
134130, 118, 133syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  E. z  e.  ( ( ~P y  i^i 
Fin )  \  { (/)
} ) U. J  =  U. z )
135134expr 598 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( U. J  =  (/)  ->  E. z  e.  ( ( ~P y  i^i 
Fin )  \  { (/)
} ) U. J  =  U. z ) )
136110, 135syl5 28 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/)
} ) U. J  =  U. z  ->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z ) )
137 idd 21 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z  ->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z ) )
138136, 137jaod 369 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( ( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/)
} ) U. J  =  U. z  \/  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z
)  ->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z ) )
139 olc 373 . . . . . . . . . . . . 13  |-  ( E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z  ->  ( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/)
} ) U. J  =  U. z  \/  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z
) )
140138, 139impbid1 194 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( ( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/)
} ) U. J  =  U. z  \/  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z
)  <->  E. z  e.  ( ( ~P y  i^i 
Fin )  \  { (/)
} ) U. J  =  U. z ) )
141100, 140syl5bb 248 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z  <->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z ) )
142 eldifi 3298 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } )  -> 
z  e.  ( ~P y  i^i  Fin )
)
143142adantl 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
z  e.  ( ~P y  i^i  Fin )
)
144143, 49sylib 188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( z  C_  y  /\  z  e.  Fin ) )
145144simpld 445 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
z  C_  y )
146 simpllr 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
y  C_  J )
147145, 146sstrd 3189 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
z  C_  J )
148 uniss 3848 . . . . . . . . . . . . . . . 16  |-  ( z 
C_  J  ->  U. z  C_ 
U. J )
149147, 148syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  U. z  C_  U. J
)
150 eqss 3194 . . . . . . . . . . . . . . . 16  |-  ( U. z  =  U. J  <->  ( U. z  C_  U. J  /\  U. J  C_  U. z
) )
151150baib 871 . . . . . . . . . . . . . . 15  |-  ( U. z  C_  U. J  -> 
( U. z  = 
U. J  <->  U. J  C_  U. z ) )
152149, 151syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( U. z  = 
U. J  <->  U. J  C_  U. z ) )
153 eqcom 2285 . . . . . . . . . . . . . 14  |-  ( U. z  =  U. J  <->  U. J  = 
U. z )
154 ssdif0 3513 . . . . . . . . . . . . . . 15  |-  ( U. J  C_  U. z  <->  ( U. J  \  U. z )  =  (/) )
155 eqcom 2285 . . . . . . . . . . . . . . 15  |-  ( ( U. J  \  U. z )  =  (/)  <->  (/)  =  ( U. J  \  U. z ) )
156154, 155bitri 240 . . . . . . . . . . . . . 14  |-  ( U. J  C_  U. z  <->  (/)  =  ( U. J  \  U. z ) )
157152, 153, 1563bitr3g 278 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( U. J  = 
U. z  <->  (/)  =  ( U. J  \  U. z ) ) )
158 df-ima 4702 . . . . . . . . . . . . . . . . . 18  |-  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  =  ran  (
( r  e.  y 
|->  ( U. J  \ 
r ) )  |`  z )
159 resmpt 5000 . . . . . . . . . . . . . . . . . . . 20  |-  ( z 
C_  y  ->  (
( r  e.  y 
|->  ( U. J  \ 
r ) )  |`  z )  =  ( r  e.  z  |->  ( U. J  \  r
) ) )
160145, 159syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( ( r  e.  y  |->  ( U. J  \  r ) )  |`  z )  =  ( r  e.  z  |->  ( U. J  \  r
) ) )
161160rneqd 4906 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  ran  ( ( r  e.  y  |->  ( U. J  \  r ) )  |`  z )  =  ran  ( r  e.  z 
|->  ( U. J  \ 
r ) ) )
162158, 161syl5eq 2327 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =  ran  ( r  e.  z 
|->  ( U. J  \ 
r ) ) )
163162inteqd 3867 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =  |^| ran  ( r  e.  z 
|->  ( U. J  \ 
r ) ) )
16459ralrimivw 2627 . . . . . . . . . . . . . . . . . 18  |-  ( J  e.  Top  ->  A. r  e.  z  ( U. J  \  r )  e. 
_V )
165164ad3antrrr 710 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  A. r  e.  z 
( U. J  \ 
r )  e.  _V )
166 dfiin3g 4932 . . . . . . . . . . . . . . . . 17  |-  ( A. r  e.  z  ( U. J  \  r
)  e.  _V  ->  |^|_ r  e.  z  ( U. J  \  r
)  =  |^| ran  ( r  e.  z 
|->  ( U. J  \ 
r ) ) )
167165, 166syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  |^|_ r  e.  z  ( U. J  \  r
)  =  |^| ran  ( r  e.  z 
|->  ( U. J  \ 
r ) ) )
168 eldifsn 3749 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } )  <->  ( z  e.  ( ~P y  i^i 
Fin )  /\  z  =/=  (/) ) )
169168simprbi 450 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } )  -> 
z  =/=  (/) )
170169adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
z  =/=  (/) )
171 iindif2 3971 . . . . . . . . . . . . . . . . 17  |-  ( z  =/=  (/)  ->  |^|_ r  e.  z  ( U. J  \  r )  =  ( U. J  \  U_ r  e.  z  r
) )
172170, 171syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  |^|_ r  e.  z  ( U. J  \  r
)  =  ( U. J  \  U_ r  e.  z  r ) )
173163, 167, 1723eqtr2d 2321 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =  ( U. J  \  U_ r  e.  z  r
) )
174 uniiun 3955 . . . . . . . . . . . . . . . 16  |-  U. z  =  U_ r  e.  z  r
175174difeq2i 3291 . . . . . . . . . . . . . . 15  |-  ( U. J  \  U. z )  =  ( U. J  \ 
U_ r  e.  z  r )
176173, 175syl6eqr 2333 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =  ( U. J  \  U. z ) )
177176eqeq2d 2294 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( (/)  =  |^| (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  <->  (/)  =  ( U. J  \  U. z ) ) )
178157, 177bitr4d 247 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( U. J  = 
U. z  <->  (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
179178rexbidva 2560 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z  <->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
180141, 179bitrd 244 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z  <->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
181 imaeq2 5008 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  (/)  ->  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  =  ( ( r  e.  y  |->  ( U. J  \  r
) ) " (/) ) )
182 ima0 5030 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  y  |->  ( U. J  \  r
) ) " (/) )  =  (/)
183181, 182syl6eq 2331 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  (/)  ->  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  =  (/) )
184183inteqd 3867 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  (/)  ->  |^| (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  =  |^| (/) )
185 int0 3876 . . . . . . . . . . . . . . . . . 18  |-  |^| (/)  =  _V
186184, 185syl6eq 2331 . . . . . . . . . . . . . . . . 17  |-  ( z  =  (/)  ->  |^| (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  =  _V )
187186neeq1d 2459 . . . . . . . . . . . . . . . 16  |-  ( z  =  (/)  ->  ( |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =/=  (/)  <->  _V  =/=  (/) ) )
18815, 187mpbiri 224 . . . . . . . . . . . . . . 15  |-  ( z  =  (/)  ->  |^| (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  =/=  (/) )
189188necomd 2529 . . . . . . . . . . . . . 14  |-  ( z  =  (/)  ->  (/)  =/=  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) )
190189necon2i 2493 . . . . . . . . . . . . 13  |-  ( (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) )
" z )  -> 
z  =/=  (/) )
191168rbaibr 874 . . . . . . . . . . . . 13  |-  ( z  =/=  (/)  ->  ( z  e.  ( ~P y  i^i 
Fin )  <->  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) ) )
192190, 191syl 15 . . . . . . . . . . . 12  |-  ( (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) )
" z )  -> 
( z  e.  ( ~P y  i^i  Fin ) 
<->  z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) ) )
193192pm5.32ri 619 . . . . . . . . . . 11  |-  ( ( z  e.  ( ~P y  i^i  Fin )  /\  (/)  =  |^| (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z ) )  <->  ( z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} )  /\  (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
194193rexbii2 2572 . . . . . . . . . 10  |-  ( E. z  e.  ( ~P y  i^i  Fin ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  <->  E. z  e.  ( ( ~P y  i^i 
Fin )  \  { (/)
} ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) )
195180, 194syl6bbr 254 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z  <->  E. z  e.  ( ~P y  i^i 
Fin ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
19680, 96, 1953bitr4rd 277 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z  <->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) )
19739, 196imbi12d 311 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  ( |^|_ r  e.  y  ( U. J  \  r
)  =  (/)  ->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) ) )
19824, 197pm2.61dane 2524 . . . . . 6  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  ( |^|_ r  e.  y  ( U. J  \  r
)  =  (/)  ->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) ) )
19960adantr 451 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  A. r  e.  y 
( U. J  \ 
r )  e.  _V )
200 dfiin3g 4932 . . . . . . . . . . 11  |-  ( A. r  e.  y  ( U. J  \  r
)  e.  _V  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  |^| ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
201199, 200syl 15 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  |^| ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
20245inteqd 3867 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =  |^| ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
203201, 202eqtr4d 2318 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  |^| (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) )
204203eqeq1d 2291 . . . . . . . 8  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( |^|_ r  e.  y  ( U. J  \ 
r )  =  (/)  <->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =  (/) ) )
205 nne 2450 . . . . . . . 8  |-  ( -. 
|^| ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  =/=  (/) 
<-> 
|^| ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  =  (/) )
206204, 205syl6bbr 254 . . . . . . 7  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( |^|_ r  e.  y  ( U. J  \ 
r )  =  (/)  <->  -.  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) )
207206imbi1d 308 . . . . . 6  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( |^|_ r  e.  y  ( U. J  \  r )  =  (/)  ->  (/)  e.  ( fi
`  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) ) )  <->  ( -.  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/)  ->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) ) )
208198, 207bitrd 244 . . . . 5  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  ( -.  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/)  ->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) ) )
209 con1b 323 . . . . 5  |-  ( ( -.  |^| ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  =/=  (/)  ->  (/)  e.  ( fi
`  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) ) )  <->  ( -.  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  |^| (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  =/=  (/) ) )
210208, 209syl6bb 252 . . . 4  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  ( -.  (/) 
e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) ) )
2111, 210sylan2 460 . . 3  |-  ( ( J  e.  Top  /\  y  e.  ~P J
)  ->  ( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z )  <->  ( -.  (/) 
e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) ) )
212211ralbidva 2559 . 2  |-  ( J  e.  Top  ->  ( A. y  e.  ~P  J ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  A. y  e.  ~P  J ( -.  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) ) )
21356iscmp 17115 . . 3  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. y  e.  ~P  J ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z ) ) )
214213baib 871 . 2  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. y  e.  ~P  J ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z ) ) )
21593adantr 451 . . 3  |-  ( ( J  e.  Top  /\  y  e.  ~P J
)  ->  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
)  e.  ~P ( Clsd `  J ) )
216 simpl 443 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  ~P ( Clsd `  J ) )  ->  J  e.  Top )
217 funmpt 5290 . . . . . 6  |-  Fun  (
r  e.  J  |->  ( U. J  \  r
) )
218217a1i 10 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  ~P ( Clsd `  J ) )  ->  Fun  ( r  e.  J  |->  ( U. J  \  r ) ) )
219 elpwi 3633 . . . . . . 7  |-  ( x  e.  ~P ( Clsd `  J )  ->  x  C_  ( Clsd `  J
) )
220 foima 5456 . . . . . . . . 9  |-  ( ( r  e.  J  |->  ( U. J  \  r
) ) : J -onto->
( Clsd `  J )  ->  ( ( r  e.  J  |->  ( U. J  \  r ) ) " J )  =  (
Clsd `  J )
)
22187, 220syl 15 . . . . . . . 8  |-  ( J  e.  Top  ->  (
( r  e.  J  |->  ( U. J  \ 
r ) ) " J )  =  (
Clsd `  J )
)
222221sseq2d 3206 . . . . . . 7  |-  ( J  e.  Top  ->  (
x  C_  ( (
r  e.  J  |->  ( U. J  \  r
) ) " J
)  <->  x  C_  ( Clsd `  J ) ) )
223219, 222syl5ibr 212 . . . . . 6  |-  ( J  e.  Top  ->  (
x  e.  ~P ( Clsd `  J )  ->  x  C_  ( ( r  e.  J  |->  ( U. J  \  r ) )
" J ) ) )
224223imp 418 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  ~P ( Clsd `  J ) )  ->  x  C_  (
( r  e.  J  |->  ( U. J  \ 
r ) ) " J ) )
225 ssimaexg 5585 . . . . 5  |-  ( ( J  e.  Top  /\  Fun  ( r  e.  J  |->  ( U. J  \ 
r ) )  /\  x  C_  ( ( r  e.  J  |->  ( U. J  \  r ) )
" J ) )  ->  E. y ( y 
C_  J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) ) )
226216, 218, 224, 225syl3anc 1182 . . . 4  |-  ( ( J  e.  Top  /\  x  e.  ~P ( Clsd `  J ) )  ->  E. y ( y 
C_  J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) ) )
227 df-rex 2549 . . . . 5  |-  ( E. y  e.  ~P  J x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
)  <->  E. y ( y  e.  ~P J  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) ) )
228 vex 2791 . . . . . . . 8  |-  y  e. 
_V
229228elpw 3631 . . . . . . 7  |-  ( y  e.  ~P J  <->  y  C_  J )
230229anbi1i 676 . . . . . 6  |-  ( ( y  e.  ~P J  /\  x  =  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) )  <->  ( y  C_  J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) ) )
231230exbii 1569 . . . . 5  |-  ( E. y ( y  e. 
~P J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) )  <->  E. y ( y  C_  J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) ) )
232227, 231bitri 240 . . . 4  |-  ( E. y  e.  ~P  J x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
)  <->  E. y ( y 
C_  J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) ) )
233226, 232sylibr 203 . . 3  |-  ( ( J  e.  Top  /\  x  e.  ~P ( Clsd `  J ) )  ->  E. y  e.  ~P  J x  =  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) )
234 simpr 447 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) )
235234fveq2d 5529 . . . . . 6  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  ( fi `  x )  =  ( fi `  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) ) )
236235eleq2d 2350 . . . . 5  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  ( (/) 
e.  ( fi `  x )  <->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) )
237236notbid 285 . . . 4  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  ( -.  (/)  e.  ( fi
`  x )  <->  -.  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) )
238234inteqd 3867 . . . . 5  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  |^| x  =  |^| ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) )
239238neeq1d 2459 . . . 4  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  ( |^| x  =/=  (/)  <->  |^| ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  =/=  (/) ) )
240237, 239imbi12d 311 . . 3  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  (
( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) )  <->  ( -.  (/) 
e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) ) )
241215, 233, 240ralxfrd 4548 . 2  |-  ( J  e.  Top  ->  ( A. x  e.  ~P  ( Clsd `  J )
( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) )  <->  A. y  e.  ~P  J ( -.  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) ) )
242212, 214, 2413bitr4d 276 1  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827   |^|cint 3862   U_ciun 3905   |^|_ciin 3906    e. cmpt 4077   `'ccnv 4688   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249    Fn wfn 5250   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255   Fincfn 6863   ficfi 7164   Topctop 16631   Clsdccld 16753   Compccmp 17113
This theorem is referenced by:  cmpfii  17136  fclscmp  17725  heibor1lem  26533
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-top 16636  df-cld 16756  df-cmp 17114
  Copyright terms: Public domain W3C validator