MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpfii Structured version   Unicode version

Theorem cmpfii 17473
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cmpfii  |-  ( ( J  e.  Comp  /\  X  C_  ( Clsd `  J
)  /\  -.  (/)  e.  ( fi `  X ) )  ->  |^| X  =/=  (/) )

Proof of Theorem cmpfii
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvex 5743 . . . . 5  |-  ( Clsd `  J )  e.  _V
21elpw2 4365 . . . 4  |-  ( X  e.  ~P ( Clsd `  J )  <->  X  C_  ( Clsd `  J ) )
32biimpri 199 . . 3  |-  ( X 
C_  ( Clsd `  J
)  ->  X  e.  ~P ( Clsd `  J
) )
4 cmptop 17459 . . . . 5  |-  ( J  e.  Comp  ->  J  e. 
Top )
5 cmpfi 17472 . . . . 5  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
64, 5syl 16 . . . 4  |-  ( J  e.  Comp  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J )
( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
76ibi 234 . . 3  |-  ( J  e.  Comp  ->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) )
8 fveq2 5729 . . . . . . 7  |-  ( x  =  X  ->  ( fi `  x )  =  ( fi `  X
) )
98eleq2d 2504 . . . . . 6  |-  ( x  =  X  ->  ( (/) 
e.  ( fi `  x )  <->  (/)  e.  ( fi `  X ) ) )
109notbid 287 . . . . 5  |-  ( x  =  X  ->  ( -.  (/)  e.  ( fi
`  x )  <->  -.  (/)  e.  ( fi `  X ) ) )
11 inteq 4054 . . . . . 6  |-  ( x  =  X  ->  |^| x  =  |^| X )
1211neeq1d 2615 . . . . 5  |-  ( x  =  X  ->  ( |^| x  =/=  (/)  <->  |^| X  =/=  (/) ) )
1310, 12imbi12d 313 . . . 4  |-  ( x  =  X  ->  (
( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) )  <->  ( -.  (/) 
e.  ( fi `  X )  ->  |^| X  =/=  (/) ) ) )
1413rspcva 3051 . . 3  |-  ( ( X  e.  ~P ( Clsd `  J )  /\  A. x  e.  ~P  ( Clsd `  J ) ( -.  (/)  e.  ( fi
`  x )  ->  |^| x  =/=  (/) ) )  ->  ( -.  (/)  e.  ( fi `  X )  ->  |^| X  =/=  (/) ) )
153, 7, 14syl2anr 466 . 2  |-  ( ( J  e.  Comp  /\  X  C_  ( Clsd `  J
) )  ->  ( -.  (/)  e.  ( fi
`  X )  ->  |^| X  =/=  (/) ) )
16153impia 1151 1  |-  ( ( J  e.  Comp  /\  X  C_  ( Clsd `  J
)  /\  -.  (/)  e.  ( fi `  X ) )  ->  |^| X  =/=  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2600   A.wral 2706    C_ wss 3321   (/)c0 3629   ~Pcpw 3800   |^|cint 4051   ` cfv 5455   ficfi 7416   Topctop 16959   Clsdccld 17081   Compccmp 17450
This theorem is referenced by:  fclscmpi  18062  cmpfiiin  26752
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-recs 6634  df-rdg 6669  df-1o 6725  df-2o 6726  df-oadd 6729  df-er 6906  df-map 7021  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-fi 7417  df-top 16964  df-cld 17084  df-cmp 17451
  Copyright terms: Public domain W3C validator