MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmphmph Unicode version

Theorem cmphmph 17479
Description: Compactness is a topological property-that is, for any two homeomorphic topologies, either both are compact or neither is. (Contributed by Jeff Hankins, 30-Jun-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
cmphmph  |-  ( J  ~=  K  ->  ( J  e.  Comp  ->  K  e.  Comp ) )

Proof of Theorem cmphmph
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 hmph 17467 . 2  |-  ( J  ~=  K  <->  ( J  Homeo  K )  =/=  (/) )
2 n0 3464 . . 3  |-  ( ( J  Homeo  K )  =/=  (/)  <->  E. f  f  e.  ( J  Homeo  K ) )
3 eqid 2283 . . . . . . 7  |-  U. J  =  U. J
4 eqid 2283 . . . . . . 7  |-  U. K  =  U. K
53, 4hmeof1o 17455 . . . . . 6  |-  ( f  e.  ( J  Homeo  K )  ->  f : U. J -1-1-onto-> U. K )
6 f1ofo 5479 . . . . . 6  |-  ( f : U. J -1-1-onto-> U. K  ->  f : U. J -onto-> U. K )
75, 6syl 15 . . . . 5  |-  ( f  e.  ( J  Homeo  K )  ->  f : U. J -onto-> U. K )
8 hmeocn 17451 . . . . 5  |-  ( f  e.  ( J  Homeo  K )  ->  f  e.  ( J  Cn  K
) )
94cncmp 17119 . . . . . . 7  |-  ( ( J  e.  Comp  /\  f : U. J -onto-> U. K  /\  f  e.  ( J  Cn  K ) )  ->  K  e.  Comp )
1093expb 1152 . . . . . 6  |-  ( ( J  e.  Comp  /\  (
f : U. J -onto-> U. K  /\  f  e.  ( J  Cn  K
) ) )  ->  K  e.  Comp )
1110expcom 424 . . . . 5  |-  ( ( f : U. J -onto-> U. K  /\  f  e.  ( J  Cn  K
) )  ->  ( J  e.  Comp  ->  K  e.  Comp ) )
127, 8, 11syl2anc 642 . . . 4  |-  ( f  e.  ( J  Homeo  K )  ->  ( J  e.  Comp  ->  K  e.  Comp ) )
1312exlimiv 1666 . . 3  |-  ( E. f  f  e.  ( J  Homeo  K )  ->  ( J  e.  Comp  ->  K  e.  Comp ) )
142, 13sylbi 187 . 2  |-  ( ( J  Homeo  K )  =/=  (/)  ->  ( J  e.  Comp  ->  K  e.  Comp ) )
151, 14sylbi 187 1  |-  ( J  ~=  K  ->  ( J  e.  Comp  ->  K  e.  Comp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    e. wcel 1684    =/= wne 2446   (/)c0 3455   U.cuni 3827   class class class wbr 4023   -onto->wfo 5253   -1-1-onto->wf1o 5254  (class class class)co 5858    Cn ccn 16954   Compccmp 17113    Homeo chmeo 17444    ~= chmph 17445
This theorem is referenced by:  ptcmpfi  17504  xrcmp  18446  reheibor  26563
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-fin 6867  df-top 16636  df-topon 16639  df-cn 16957  df-cmp 17114  df-hmeo 17446  df-hmph 17447
  Copyright terms: Public domain W3C validator