Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpidelt Structured version   Unicode version

Theorem cmpidelt 21917
 Description: A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmpidelt.1
cmpidelt.2 GId
Assertion
Ref Expression
cmpidelt

Proof of Theorem cmpidelt
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmpidelt.1 . . . . 5
2 cmpidelt.2 . . . . 5 GId
31, 2idrval 21915 . . . 4
43eqcomd 2441 . . 3
51, 2iorlid 21916 . . . 4
61exidu1 21914 . . . 4
7 oveq1 6088 . . . . . . . 8
87eqeq1d 2444 . . . . . . 7
9 oveq2 6089 . . . . . . . 8
109eqeq1d 2444 . . . . . . 7
118, 10anbi12d 692 . . . . . 6
1211ralbidv 2725 . . . . 5
1312riota2 6572 . . . 4
145, 6, 13syl2anc 643 . . 3
154, 14mpbird 224 . 2
16 oveq2 6089 . . . . 5
17 id 20 . . . . 5
1816, 17eqeq12d 2450 . . . 4
19 oveq1 6088 . . . . 5
2019, 17eqeq12d 2450 . . . 4
2118, 20anbi12d 692 . . 3
2221rspccva 3051 . 2
2315, 22sylan 458 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  wral 2705  wreu 2707   cin 3319   crn 4879  cfv 5454  (class class class)co 6081  crio 6542  GIdcgi 21775   cexid 21902  cmagm 21906 This theorem is referenced by:  rngoidmlem  22011  exidreslem  26552 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-un 4701 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fo 5460  df-fv 5462  df-ov 6084  df-riota 6549  df-gid 21780  df-exid 21903  df-mgm 21907
 Copyright terms: Public domain W3C validator