MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpsub Unicode version

Theorem cmpsub 17143
Description: Two equivalent ways of describing a compact subset of a topological space. Inspired by Sue E. Goodman's Beginning Topology. (Contributed by Jeff Hankins, 22-Jun-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
cmpsub.1  |-  X  = 
U. J
Assertion
Ref Expression
cmpsub  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( Jt  S )  e.  Comp  <->  A. c  e.  ~P  J ( S  C_  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d ) ) )
Distinct variable groups:    c, d, J    S, c, d    X, c, d

Proof of Theorem cmpsub
Dummy variables  x  y  f  s  t  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . 4  |-  U. ( Jt  S )  =  U. ( Jt  S )
21iscmp 17131 . . 3  |-  ( ( Jt  S )  e.  Comp  <->  (
( Jt  S )  e.  Top  /\ 
A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) )
3 id 19 . . . . . 6  |-  ( S 
C_  X  ->  S  C_  X )
4 cmpsub.1 . . . . . . 7  |-  X  = 
U. J
54topopn 16668 . . . . . 6  |-  ( J  e.  Top  ->  X  e.  J )
6 ssexg 4176 . . . . . 6  |-  ( ( S  C_  X  /\  X  e.  J )  ->  S  e.  _V )
73, 5, 6syl2anr 464 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  _V )
8 resttop 16907 . . . . 5  |-  ( ( J  e.  Top  /\  S  e.  _V )  ->  ( Jt  S )  e.  Top )
97, 8syldan 456 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( Jt  S )  e.  Top )
10 ibar 490 . . . . 5  |-  ( ( Jt  S )  e.  Top  ->  ( A. s  e. 
~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t )  <-> 
( ( Jt  S )  e.  Top  /\  A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) ) )
1110bicomd 192 . . . 4  |-  ( ( Jt  S )  e.  Top  ->  ( ( ( Jt  S )  e.  Top  /\  A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) )  <->  A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) )
129, 11syl 15 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( Jt  S )  e.  Top  /\  A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) )  <->  A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) )
132, 12syl5bb 248 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( Jt  S )  e.  Comp  <->  A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) )
14 vex 2804 . . . . . . . . . . 11  |-  t  e. 
_V
15 eqeq1 2302 . . . . . . . . . . . 12  |-  ( x  =  t  ->  (
x  =  ( y  i^i  S )  <->  t  =  ( y  i^i  S
) ) )
1615rexbidv 2577 . . . . . . . . . . 11  |-  ( x  =  t  ->  ( E. y  e.  c  x  =  ( y  i^i  S )  <->  E. y  e.  c  t  =  ( y  i^i  S
) ) )
1714, 16elab 2927 . . . . . . . . . 10  |-  ( t  e.  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  <->  E. y  e.  c 
t  =  ( y  i^i  S ) )
18 vex 2804 . . . . . . . . . . . . . . 15  |-  c  e. 
_V
1918elpw 3644 . . . . . . . . . . . . . 14  |-  ( c  e.  ~P J  <->  c  C_  J )
20 ssel2 3188 . . . . . . . . . . . . . . . 16  |-  ( ( c  C_  J  /\  y  e.  c )  ->  y  e.  J )
21 ineq1 3376 . . . . . . . . . . . . . . . . . . 19  |-  ( d  =  y  ->  (
d  i^i  S )  =  ( y  i^i 
S ) )
2221eqeq2d 2307 . . . . . . . . . . . . . . . . . 18  |-  ( d  =  y  ->  (
t  =  ( d  i^i  S )  <->  t  =  ( y  i^i  S
) ) )
2322rspcev 2897 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  J  /\  t  =  ( y  i^i  S ) )  ->  E. d  e.  J  t  =  ( d  i^i  S ) )
2423ex 423 . . . . . . . . . . . . . . . 16  |-  ( y  e.  J  ->  (
t  =  ( y  i^i  S )  ->  E. d  e.  J  t  =  ( d  i^i  S ) ) )
2520, 24syl 15 . . . . . . . . . . . . . . 15  |-  ( ( c  C_  J  /\  y  e.  c )  ->  ( t  =  ( y  i^i  S )  ->  E. d  e.  J  t  =  ( d  i^i  S ) ) )
2625ex 423 . . . . . . . . . . . . . 14  |-  ( c 
C_  J  ->  (
y  e.  c  -> 
( t  =  ( y  i^i  S )  ->  E. d  e.  J  t  =  ( d  i^i  S ) ) ) )
2719, 26sylbi 187 . . . . . . . . . . . . 13  |-  ( c  e.  ~P J  -> 
( y  e.  c  ->  ( t  =  ( y  i^i  S
)  ->  E. d  e.  J  t  =  ( d  i^i  S
) ) ) )
2827adantl 452 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  (
y  e.  c  -> 
( t  =  ( y  i^i  S )  ->  E. d  e.  J  t  =  ( d  i^i  S ) ) ) )
2928rexlimdv 2679 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  ( E. y  e.  c 
t  =  ( y  i^i  S )  ->  E. d  e.  J  t  =  ( d  i^i  S ) ) )
30 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  J  e.  Top )
314sseq2i 3216 . . . . . . . . . . . . . 14  |-  ( S 
C_  X  <->  S  C_  U. J
)
32 uniexg 4533 . . . . . . . . . . . . . . . 16  |-  ( J  e.  Top  ->  U. J  e.  _V )
33 ssexg 4176 . . . . . . . . . . . . . . . 16  |-  ( ( S  C_  U. J  /\  U. J  e.  _V )  ->  S  e.  _V )
3432, 33sylan2 460 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  U. J  /\  J  e.  Top )  ->  S  e.  _V )
3534ancoms 439 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  S  e.  _V )
3631, 35sylan2b 461 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  _V )
3736adantr 451 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  S  e.  _V )
38 elrest 13348 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  S  e.  _V )  ->  ( t  e.  ( Jt  S )  <->  E. d  e.  J  t  =  ( d  i^i  S
) ) )
3930, 37, 38syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  (
t  e.  ( Jt  S )  <->  E. d  e.  J  t  =  ( d  i^i  S ) ) )
4029, 39sylibrd 225 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  ( E. y  e.  c 
t  =  ( y  i^i  S )  -> 
t  e.  ( Jt  S ) ) )
4117, 40syl5bi 208 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  (
t  e.  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  ->  t  e.  ( Jt  S ) ) )
4241ssrdv 3198 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) } 
C_  ( Jt  S ) )
4318abrexex 5779 . . . . . . . . 9  |-  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  e.  _V
4443elpw 3644 . . . . . . . 8  |-  ( { x  |  E. y  e.  c  x  =  ( y  i^i  S
) }  e.  ~P ( Jt  S )  <->  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) } 
C_  ( Jt  S ) )
4542, 44sylibr 203 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  e.  ~P ( Jt  S ) )
46 unieq 3852 . . . . . . . . . 10  |-  ( s  =  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  ->  U. s  =  U. { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) } )
4746eqeq2d 2307 . . . . . . . . 9  |-  ( s  =  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  ->  ( U. ( Jt  S )  =  U. s 
<-> 
U. ( Jt  S )  =  U. { x  |  E. y  e.  c  x  =  ( y  i^i  S ) } ) )
48 pweq 3641 . . . . . . . . . . 11  |-  ( s  =  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  ->  ~P s  =  ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) } )
4948ineq1d 3382 . . . . . . . . . 10  |-  ( s  =  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  ->  ( ~P s  i^i  Fin )  =  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) )
5049rexeqdv 2756 . . . . . . . . 9  |-  ( s  =  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  ->  ( E. t  e.  ( ~P s  i^i 
Fin ) U. ( Jt  S )  =  U. t 
<->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) U. ( Jt  S )  =  U. t ) )
5147, 50imbi12d 311 . . . . . . . 8  |-  ( s  =  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  ->  ( ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t )  <-> 
( U. ( Jt  S )  =  U. {
x  |  E. y  e.  c  x  =  ( y  i^i  S
) }  ->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) )
5251rspcva 2895 . . . . . . 7  |-  ( ( { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  e.  ~P ( Jt  S )  /\  A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) )  ->  ( U. ( Jt  S )  =  U. { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  ->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  i^i  Fin ) U. ( Jt  S )  =  U. t
) )
5345, 52sylan 457 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) )  ->  ( U. ( Jt  S )  =  U. { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  ->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  i^i  Fin ) U. ( Jt  S )  =  U. t
) )
5453ex 423 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  ( A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t )  ->  ( U. ( Jt  S )  =  U. { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  ->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  i^i  Fin ) U. ( Jt  S )  =  U. t
) ) )
554restuni 16909 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  =  U. ( Jt  S ) )
5655ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  ->  S  =  U. ( Jt  S ) )
57 vex 2804 . . . . . . . . . . . . . 14  |-  y  e. 
_V
5857inex1 4171 . . . . . . . . . . . . 13  |-  ( y  i^i  S )  e. 
_V
5958dfiun2 3953 . . . . . . . . . . . 12  |-  U_ y  e.  c  ( y  i^i  S )  =  U. { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }
60 incom 3374 . . . . . . . . . . . . . 14  |-  ( y  i^i  S )  =  ( S  i^i  y
)
6160a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_  U. c )  /\  y  e.  c )  ->  ( y  i^i  S )  =  ( S  i^i  y ) )
6261iuneq2dv 3942 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  ->  U_ y  e.  c 
( y  i^i  S
)  =  U_ y  e.  c  ( S  i^i  y ) )
6359, 62syl5eqr 2342 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  ->  U. { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  =  U_ y  e.  c  ( S  i^i  y ) )
64 iunin2 3982 . . . . . . . . . . . 12  |-  U_ y  e.  c  ( S  i^i  y )  =  ( S  i^i  U_ y  e.  c  y )
65 uniiun 3971 . . . . . . . . . . . . . . . 16  |-  U. c  =  U_ y  e.  c  y
6665eqcomi 2300 . . . . . . . . . . . . . . 15  |-  U_ y  e.  c  y  =  U. c
6766a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  ->  U_ y  e.  c 
y  =  U. c
)
6867ineq2d 3383 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  -> 
( S  i^i  U_ y  e.  c  y
)  =  ( S  i^i  U. c ) )
69 incom 3374 . . . . . . . . . . . . . . 15  |-  ( S  i^i  U. c )  =  ( U. c  i^i  S )
70 sseqin2 3401 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  U. c  <->  ( U. c  i^i  S )  =  S )
7170biimpi 186 . . . . . . . . . . . . . . 15  |-  ( S 
C_  U. c  ->  ( U. c  i^i  S )  =  S )
7269, 71syl5eq 2340 . . . . . . . . . . . . . 14  |-  ( S 
C_  U. c  ->  ( S  i^i  U. c )  =  S )
7372adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  -> 
( S  i^i  U. c )  =  S )
7468, 73eqtrd 2328 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  -> 
( S  i^i  U_ y  e.  c  y
)  =  S )
7564, 74syl5eq 2340 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  ->  U_ y  e.  c 
( S  i^i  y
)  =  S )
7663, 75eqtr2d 2329 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  ->  S  =  U. { x  |  E. y  e.  c  x  =  ( y  i^i  S ) } )
7756, 76eqeq12d 2310 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  -> 
( S  =  S  <->  U. ( Jt  S )  =  U. { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) } ) )
7856eqeq1d 2304 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  -> 
( S  =  U. t 
<-> 
U. ( Jt  S )  =  U. t ) )
7978rexbidv 2577 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  -> 
( E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) S  =  U. t  <->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) U. ( Jt  S )  =  U. t ) )
8077, 79imbi12d 311 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  -> 
( ( S  =  S  ->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) S  =  U. t )  <-> 
( U. ( Jt  S )  =  U. {
x  |  E. y  e.  c  x  =  ( y  i^i  S
) }  ->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) )
81 eqid 2296 . . . . . . . . . 10  |-  S  =  S
8281a1bi 327 . . . . . . . . 9  |-  ( E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  i^i  Fin ) S  =  U. t 
<->  ( S  =  S  ->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) S  =  U. t ) )
83 elin 3371 . . . . . . . . . . . 12  |-  ( t  e.  ( ~P {
x  |  E. y  e.  c  x  =  ( y  i^i  S
) }  i^i  Fin ) 
<->  ( t  e.  ~P { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  /\  t  e.  Fin )
)
8414elpw 3644 . . . . . . . . . . . . . 14  |-  ( t  e.  ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  <-> 
t  C_  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) } )
85 dfss3 3183 . . . . . . . . . . . . . 14  |-  ( t 
C_  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  <->  A. s  e.  t 
s  e.  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) } )
86 vex 2804 . . . . . . . . . . . . . . . 16  |-  s  e. 
_V
87 eqeq1 2302 . . . . . . . . . . . . . . . . 17  |-  ( x  =  s  ->  (
x  =  ( y  i^i  S )  <->  s  =  ( y  i^i  S
) ) )
8887rexbidv 2577 . . . . . . . . . . . . . . . 16  |-  ( x  =  s  ->  ( E. y  e.  c  x  =  ( y  i^i  S )  <->  E. y  e.  c  s  =  ( y  i^i  S
) ) )
8986, 88elab 2927 . . . . . . . . . . . . . . 15  |-  ( s  e.  { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  <->  E. y  e.  c 
s  =  ( y  i^i  S ) )
9089ralbii 2580 . . . . . . . . . . . . . 14  |-  ( A. s  e.  t  s  e.  { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  <->  A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S
) )
9184, 85, 903bitri 262 . . . . . . . . . . . . 13  |-  ( t  e.  ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  <->  A. s  e.  t  E. y  e.  c 
s  =  ( y  i^i  S ) )
9291anbi1i 676 . . . . . . . . . . . 12  |-  ( ( t  e.  ~P {
x  |  E. y  e.  c  x  =  ( y  i^i  S
) }  /\  t  e.  Fin )  <->  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i 
S )  /\  t  e.  Fin ) )
9383, 92bitri 240 . . . . . . . . . . 11  |-  ( t  e.  ( ~P {
x  |  E. y  e.  c  x  =  ( y  i^i  S
) }  i^i  Fin ) 
<->  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin ) )
94 ineq1 3376 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( f `  s )  ->  (
y  i^i  S )  =  ( ( f `
 s )  i^i 
S ) )
9594eqeq2d 2307 . . . . . . . . . . . . . . 15  |-  ( y  =  ( f `  s )  ->  (
s  =  ( y  i^i  S )  <->  s  =  ( ( f `  s )  i^i  S
) ) )
9695ac6sfi 7117 . . . . . . . . . . . . . 14  |-  ( ( t  e.  Fin  /\  A. s  e.  t  E. y  e.  c  s  =  ( y  i^i 
S ) )  ->  E. f ( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `
 s )  i^i 
S ) ) )
9796ancoms 439 . . . . . . . . . . . . 13  |-  ( ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )  ->  E. f ( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `
 s )  i^i 
S ) ) )
9897adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_  U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S
)  /\  t  e.  Fin ) )  ->  E. f
( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s )  i^i  S
) ) )
99 frn 5411 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f : t --> c  ->  ran  f  C_  c )
10099ad2antrl 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )
)  /\  S  =  U. t )  /\  (
f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
) )  ->  ran  f  C_  c )
101 vex 2804 . . . . . . . . . . . . . . . . . . . . . 22  |-  f  e. 
_V
102101rnex 4958 . . . . . . . . . . . . . . . . . . . . 21  |-  ran  f  e.  _V
103102elpw 3644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ran  f  e.  ~P c  <->  ran  f  C_  c )
104100, 103sylibr 203 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )
)  /\  S  =  U. t )  /\  (
f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
) )  ->  ran  f  e.  ~P c
)
105 simprr 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_  U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S
)  /\  t  e.  Fin ) )  ->  t  e.  Fin )
106105ad2antrr 706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )
)  /\  S  =  U. t )  /\  (
f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
) )  ->  t  e.  Fin )
107 ffn 5405 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f : t --> c  -> 
f  Fn  t )
108 dffn4 5473 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  Fn  t  <->  f :
t -onto-> ran  f )
109107, 108sylib 188 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f : t --> c  -> 
f : t -onto-> ran  f )
110 fodomfi 7151 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( t  e.  Fin  /\  f : t -onto-> ran  f
)  ->  ran  f  ~<_  t )
111109, 110sylan2 460 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( t  e.  Fin  /\  f : t --> c )  ->  ran  f  ~<_  t )
112111adantll 694 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )  /\  f : t --> c )  ->  ran  f  ~<_  t )
113112adantll 694 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J
)  /\  S  C_  U. c
)  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i 
S )  /\  t  e.  Fin ) )  /\  f : t --> c )  ->  ran  f  ~<_  t )
114113ad2ant2r 727 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )
)  /\  S  =  U. t )  /\  (
f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
) )  ->  ran  f  ~<_  t )
115 domfi 7100 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( t  e.  Fin  /\  ran  f  ~<_  t )  ->  ran  f  e.  Fin )
116106, 114, 115syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )
)  /\  S  =  U. t )  /\  (
f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
) )  ->  ran  f  e.  Fin )
117 elin 3371 . . . . . . . . . . . . . . . . . . 19  |-  ( ran  f  e.  ( ~P c  i^i  Fin )  <->  ( ran  f  e.  ~P c  /\  ran  f  e. 
Fin ) )
118104, 116, 117sylanbrc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )
)  /\  S  =  U. t )  /\  (
f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
) )  ->  ran  f  e.  ( ~P c  i^i  Fin ) )
119 id 19 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( s  =  u  ->  s  =  u )
120 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( s  =  u  ->  (
f `  s )  =  ( f `  u ) )
121120ineq1d 3382 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( s  =  u  ->  (
( f `  s
)  i^i  S )  =  ( ( f `
 u )  i^i 
S ) )
122119, 121eqeq12d 2310 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( s  =  u  ->  (
s  =  ( ( f `  s )  i^i  S )  <->  u  =  ( ( f `  u )  i^i  S
) ) )
123122rspccv 2894 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A. s  e.  t  s  =  ( ( f `
 s )  i^i 
S )  ->  (
u  e.  t  ->  u  =  ( (
f `  u )  i^i  S ) ) )
124 pm2.27 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( u  e.  t  ->  (
( u  e.  t  ->  u  =  ( ( f `  u
)  i^i  S )
)  ->  u  =  ( ( f `  u )  i^i  S
) ) )
125 inss1 3402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( f `  u )  i^i  S )  C_  ( f `  u
)
126 sseq1 3212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( u  =  ( ( f `
 u )  i^i 
S )  ->  (
u  C_  ( f `  u )  <->  ( (
f `  u )  i^i  S )  C_  (
f `  u )
) )
127125, 126mpbiri 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( u  =  ( ( f `
 u )  i^i 
S )  ->  u  C_  ( f `  u
) )
128 ssel 3187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( u 
C_  ( f `  u )  ->  (
w  e.  u  ->  w  e.  ( f `  u ) ) )
129128a1dd 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( u 
C_  ( f `  u )  ->  (
w  e.  u  -> 
( f : t --> c  ->  w  e.  ( f `  u
) ) ) )
130127, 129syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( u  =  ( ( f `
 u )  i^i 
S )  ->  (
w  e.  u  -> 
( f : t --> c  ->  w  e.  ( f `  u
) ) ) )
131130a1i 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( u  e.  t  ->  (
u  =  ( ( f `  u )  i^i  S )  -> 
( w  e.  u  ->  ( f : t --> c  ->  w  e.  ( f `  u
) ) ) ) )
1321313imp 1145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( u  e.  t  /\  u  =  ( (
f `  u )  i^i  S )  /\  w  e.  u )  ->  (
f : t --> c  ->  w  e.  ( f `  u ) ) )
133 fnfvelrn 5678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( f  Fn  t  /\  u  e.  t )  ->  ( f `  u
)  e.  ran  f
)
134133expcom 424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( u  e.  t  ->  (
f  Fn  t  -> 
( f `  u
)  e.  ran  f
) )
1351343ad2ant1 976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( u  e.  t  /\  u  =  ( (
f `  u )  i^i  S )  /\  w  e.  u )  ->  (
f  Fn  t  -> 
( f `  u
)  e.  ran  f
) )
136107, 135syl5 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( u  e.  t  /\  u  =  ( (
f `  u )  i^i  S )  /\  w  e.  u )  ->  (
f : t --> c  ->  ( f `  u )  e.  ran  f ) )
137132, 136jcad 519 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( u  e.  t  /\  u  =  ( (
f `  u )  i^i  S )  /\  w  e.  u )  ->  (
f : t --> c  ->  ( w  e.  ( f `  u
)  /\  ( f `  u )  e.  ran  f ) ) )
1381373exp 1150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( u  e.  t  ->  (
u  =  ( ( f `  u )  i^i  S )  -> 
( w  e.  u  ->  ( f : t --> c  ->  ( w  e.  ( f `  u
)  /\  ( f `  u )  e.  ran  f ) ) ) ) )
139124, 138syld 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( u  e.  t  ->  (
( u  e.  t  ->  u  =  ( ( f `  u
)  i^i  S )
)  ->  ( w  e.  u  ->  ( f : t --> c  -> 
( w  e.  ( f `  u )  /\  ( f `  u )  e.  ran  f ) ) ) ) )
140139com3r 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( w  e.  u  ->  (
u  e.  t  -> 
( ( u  e.  t  ->  u  =  ( ( f `  u )  i^i  S
) )  ->  (
f : t --> c  ->  ( w  e.  ( f `  u
)  /\  ( f `  u )  e.  ran  f ) ) ) ) )
141140imp 418 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( w  e.  u  /\  u  e.  t )  ->  ( ( u  e.  t  ->  u  =  ( ( f `  u )  i^i  S
) )  ->  (
f : t --> c  ->  ( w  e.  ( f `  u
)  /\  ( f `  u )  e.  ran  f ) ) ) )
142141com3l 75 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( u  e.  t  ->  u  =  ( (
f `  u )  i^i  S ) )  -> 
( f : t --> c  ->  ( (
w  e.  u  /\  u  e.  t )  ->  ( w  e.  ( f `  u )  /\  ( f `  u )  e.  ran  f ) ) ) )
143142impcom 419 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f : t --> c  /\  ( u  e.  t  ->  u  =  ( ( f `  u )  i^i  S
) ) )  -> 
( ( w  e.  u  /\  u  e.  t )  ->  (
w  e.  ( f `
 u )  /\  ( f `  u
)  e.  ran  f
) ) )
144123, 143sylan2 460 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
)  ->  ( (
w  e.  u  /\  u  e.  t )  ->  ( w  e.  ( f `  u )  /\  ( f `  u )  e.  ran  f ) ) )
145 fvex 5555 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f `
 u )  e. 
_V
146 eleq2 2357 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  ( f `  u )  ->  (
w  e.  v  <->  w  e.  ( f `  u
) ) )
147 eleq1 2356 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  ( f `  u )  ->  (
v  e.  ran  f  <->  ( f `  u )  e.  ran  f ) )
148146, 147anbi12d 691 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  =  ( f `  u )  ->  (
( w  e.  v  /\  v  e.  ran  f )  <->  ( w  e.  ( f `  u
)  /\  ( f `  u )  e.  ran  f ) ) )
149145, 148spcev 2888 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( w  e.  ( f `
 u )  /\  ( f `  u
)  e.  ran  f
)  ->  E. v
( w  e.  v  /\  v  e.  ran  f ) )
150144, 149syl6 29 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
)  ->  ( (
w  e.  u  /\  u  e.  t )  ->  E. v ( w  e.  v  /\  v  e.  ran  f ) ) )
151150exlimdv 1626 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
)  ->  ( E. u ( w  e.  u  /\  u  e.  t )  ->  E. v
( w  e.  v  /\  v  e.  ran  f ) ) )
152 eluni 3846 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  U. t  <->  E. u
( w  e.  u  /\  u  e.  t
) )
153 eluni 3846 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  U. ran  f  <->  E. v ( w  e.  v  /\  v  e. 
ran  f ) )
154151, 152, 1533imtr4g 261 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
)  ->  ( w  e.  U. t  ->  w  e.  U. ran  f ) )
155154ssrdv 3198 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
)  ->  U. t  C_ 
U. ran  f )
156155adantl 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )
)  /\  S  =  U. t )  /\  (
f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
) )  ->  U. t  C_ 
U. ran  f )
157 sseq1 3212 . . . . . . . . . . . . . . . . . . . 20  |-  ( S  =  U. t  -> 
( S  C_  U. ran  f 
<-> 
U. t  C_  U. ran  f ) )
158157ad2antlr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )
)  /\  S  =  U. t )  /\  (
f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
) )  ->  ( S  C_  U. ran  f  <->  U. t  C_  U. ran  f
) )
159156, 158mpbird 223 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )
)  /\  S  =  U. t )  /\  (
f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
) )  ->  S  C_ 
U. ran  f )
160118, 159jca 518 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S )  /\  t  e.  Fin )
)  /\  S  =  U. t )  /\  (
f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
) )  ->  ( ran  f  e.  ( ~P c  i^i  Fin )  /\  S  C_  U. ran  f ) )
161160ex 423 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J
)  /\  S  C_  U. c
)  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i 
S )  /\  t  e.  Fin ) )  /\  S  =  U. t
)  ->  ( (
f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
)  ->  ( ran  f  e.  ( ~P c  i^i  Fin )  /\  S  C_  U. ran  f
) ) )
162161eximdv 1612 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J
)  /\  S  C_  U. c
)  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i 
S )  /\  t  e.  Fin ) )  /\  S  =  U. t
)  ->  ( E. f ( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `
 s )  i^i 
S ) )  ->  E. f ( ran  f  e.  ( ~P c  i^i 
Fin )  /\  S  C_ 
U. ran  f )
) )
163162ex 423 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_  U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S
)  /\  t  e.  Fin ) )  ->  ( S  =  U. t  ->  ( E. f ( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `  s
)  i^i  S )
)  ->  E. f
( ran  f  e.  ( ~P c  i^i  Fin )  /\  S  C_  U. ran  f ) ) ) )
164163com23 72 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_  U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S
)  /\  t  e.  Fin ) )  ->  ( E. f ( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `
 s )  i^i 
S ) )  -> 
( S  =  U. t  ->  E. f ( ran  f  e.  ( ~P c  i^i  Fin )  /\  S  C_  U. ran  f ) ) ) )
165 unieq 3852 . . . . . . . . . . . . . . . 16  |-  ( d  =  ran  f  ->  U. d  =  U. ran  f )
166165sseq2d 3219 . . . . . . . . . . . . . . 15  |-  ( d  =  ran  f  -> 
( S  C_  U. d  <->  S 
C_  U. ran  f ) )
167166rspcev 2897 . . . . . . . . . . . . . 14  |-  ( ( ran  f  e.  ( ~P c  i^i  Fin )  /\  S  C_  U. ran  f )  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d )
168167exlimiv 1624 . . . . . . . . . . . . 13  |-  ( E. f ( ran  f  e.  ( ~P c  i^i 
Fin )  /\  S  C_ 
U. ran  f )  ->  E. d  e.  ( ~P c  i^i  Fin ) S  C_  U. d
)
169164, 168syl8 65 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_  U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S
)  /\  t  e.  Fin ) )  ->  ( E. f ( f : t --> c  /\  A. s  e.  t  s  =  ( ( f `
 s )  i^i 
S ) )  -> 
( S  =  U. t  ->  E. d  e.  ( ~P c  i^i  Fin ) S  C_  U. d
) ) )
17098, 169mpd 14 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_  U. c )  /\  ( A. s  e.  t  E. y  e.  c  s  =  ( y  i^i  S
)  /\  t  e.  Fin ) )  ->  ( S  =  U. t  ->  E. d  e.  ( ~P c  i^i  Fin ) S  C_  U. d
) )
17193, 170sylan2b 461 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  /\  S  C_  U. c )  /\  t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) )  ->  ( S  = 
U. t  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d ) )
172171rexlimdva 2680 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  -> 
( E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) S  =  U. t  ->  E. d  e.  ( ~P c  i^i  Fin ) S  C_  U. d ) )
17382, 172syl5bir 209 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  -> 
( ( S  =  S  ->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) S  =  U. t )  ->  E. d  e.  ( ~P c  i^i  Fin ) S  C_  U. d
) )
17480, 173sylbird 226 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  c  e.  ~P J )  /\  S  C_ 
U. c )  -> 
( ( U. ( Jt  S )  =  U. { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  ->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  i^i  Fin ) U. ( Jt  S )  =  U. t
)  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d ) )
175174ex 423 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  ( S  C_  U. c  -> 
( ( U. ( Jt  S )  =  U. { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  ->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i 
S ) }  i^i  Fin ) U. ( Jt  S )  =  U. t
)  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d ) ) )
176175com23 72 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  (
( U. ( Jt  S )  =  U. {
x  |  E. y  e.  c  x  =  ( y  i^i  S
) }  ->  E. t  e.  ( ~P { x  |  E. y  e.  c  x  =  ( y  i^i  S ) }  i^i  Fin ) U. ( Jt  S )  =  U. t )  ->  ( S  C_  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) S  C_  U. d ) ) )
17754, 176syld 40 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  c  e.  ~P J )  ->  ( A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t )  ->  ( S  C_  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d ) ) )
178177ralrimdva 2646 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. s  e. 
~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t )  ->  A. c  e.  ~P  J ( S  C_  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d ) ) )
1794cmpsublem 17142 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. c  e. 
~P  J ( S 
C_  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d )  ->  A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) )
180178, 179impbid 183 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. s  e. 
~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t )  <->  A. c  e.  ~P  J ( S  C_  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d ) ) )
18113, 180bitrd 244 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( Jt  S )  e.  Comp  <->  A. c  e.  ~P  J ( S  C_  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557   _Vcvv 2801    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   U.cuni 3843   U_ciun 3921   class class class wbr 4039   ran crn 4706    Fn wfn 5266   -->wf 5267   -onto->wfo 5269   ` cfv 5271  (class class class)co 5874    ~<_ cdom 6877   Fincfn 6879   ↾t crest 13341   Topctop 16647   Compccmp 17129
This theorem is referenced by:  cmpcld  17145  uncmp  17146  hauscmplem  17149  1stckgenlem  17264  icccmp  18346  bndth  18472  ovolicc2  18897  stoweidlem50  27902  stoweidlem57  27909
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-fin 6883  df-fi 7181  df-rest 13343  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655  df-cmp 17130
  Copyright terms: Public domain W3C validator