MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpsublem Unicode version

Theorem cmpsublem 17142
Description: Lemma for cmpsub 17143. (Contributed by Jeff Hankins, 28-Jun-2009.)
Hypothesis
Ref Expression
cmpsub.1  |-  X  = 
U. J
Assertion
Ref Expression
cmpsublem  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. c  e. 
~P  J ( S 
C_  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d )  ->  A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) )
Distinct variable groups:    c, d,
s, t, J    S, c, d, s, t    X, c, d, s, t

Proof of Theorem cmpsublem
Dummy variables  x  y  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 4180 . . . . . . 7  |-  ( J  e.  Top  ->  { y  e.  J  |  ( y  i^i  S )  e.  s }  e.  _V )
21ad2antrr 706 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  ->  { y  e.  J  |  ( y  i^i 
S )  e.  s }  e.  _V )
3 ssrab2 3271 . . . . . . 7  |-  { y  e.  J  |  ( y  i^i  S )  e.  s }  C_  J
4 elpwg 3645 . . . . . . 7  |-  ( { y  e.  J  | 
( y  i^i  S
)  e.  s }  e.  _V  ->  ( { y  e.  J  |  ( y  i^i 
S )  e.  s }  e.  ~P J  <->  { y  e.  J  | 
( y  i^i  S
)  e.  s } 
C_  J ) )
53, 4mpbiri 224 . . . . . 6  |-  ( { y  e.  J  | 
( y  i^i  S
)  e.  s }  e.  _V  ->  { y  e.  J  |  ( y  i^i  S )  e.  s }  e.  ~P J )
62, 5syl 15 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  ->  { y  e.  J  |  ( y  i^i 
S )  e.  s }  e.  ~P J
)
7 unieq 3852 . . . . . . . 8  |-  ( c  =  { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  U. c  =  U. { y  e.  J  |  ( y  i^i  S )  e.  s } )
87sseq2d 3219 . . . . . . 7  |-  ( c  =  { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  ( S  C_  U. c  <->  S  C_  U. {
y  e.  J  | 
( y  i^i  S
)  e.  s } ) )
9 pweq 3641 . . . . . . . . 9  |-  ( c  =  { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  ~P c  =  ~P { y  e.  J  |  ( y  i^i  S )  e.  s } )
109ineq1d 3382 . . . . . . . 8  |-  ( c  =  { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  ( ~P c  i^i  Fin )  =  ( ~P {
y  e.  J  | 
( y  i^i  S
)  e.  s }  i^i  Fin ) )
1110rexeqdv 2756 . . . . . . 7  |-  ( c  =  { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  ( E. d  e.  ( ~P c  i^i  Fin ) S  C_  U. d  <->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  i^i  Fin ) S  C_  U. d
) )
128, 11imbi12d 311 . . . . . 6  |-  ( c  =  { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  (
( S  C_  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) S  C_  U. d
)  <->  ( S  C_  U. { y  e.  J  |  ( y  i^i 
S )  e.  s }  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  i^i  Fin ) S  C_  U. d
) ) )
1312rspcva 2895 . . . . 5  |-  ( ( { y  e.  J  |  ( y  i^i 
S )  e.  s }  e.  ~P J  /\  A. c  e.  ~P  J ( S  C_  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d ) )  -> 
( S  C_  U. {
y  e.  J  | 
( y  i^i  S
)  e.  s }  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  i^i  Fin ) S  C_  U. d
) )
146, 13sylan 457 . . . 4  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  A. c  e.  ~P  J
( S  C_  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) S  C_  U. d
) )  ->  ( S  C_  U. { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  i^i  Fin ) S  C_  U. d ) )
1514ex 423 . . 3  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  -> 
( A. c  e. 
~P  J ( S 
C_  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d )  ->  ( S  C_  U. { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  i^i  Fin ) S  C_  U. d ) ) )
16 cmpsub.1 . . . . . . . 8  |-  X  = 
U. J
1716restuni 16909 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  =  U. ( Jt  S ) )
1817adantr 451 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  ->  S  =  U. ( Jt  S ) )
1918eqeq1d 2304 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  -> 
( S  =  U. s 
<-> 
U. ( Jt  S )  =  U. s ) )
20 vex 2804 . . . . . . . . . . . 12  |-  s  e. 
_V
2120elpw 3644 . . . . . . . . . . 11  |-  ( s  e.  ~P ( Jt  S )  <->  s  C_  ( Jt  S ) )
22 eleq2 2357 . . . . . . . . . . . . . . 15  |-  ( S  =  U. s  -> 
( t  e.  S  <->  t  e.  U. s ) )
23 eluni 3846 . . . . . . . . . . . . . . 15  |-  ( t  e.  U. s  <->  E. u
( t  e.  u  /\  u  e.  s
) )
2422, 23syl6bb 252 . . . . . . . . . . . . . 14  |-  ( S  =  U. s  -> 
( t  e.  S  <->  E. u ( t  e.  u  /\  u  e.  s ) ) )
2524adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  s  C_  ( Jt  S ) )  /\  S  =  U. s
)  ->  ( t  e.  S  <->  E. u ( t  e.  u  /\  u  e.  s ) ) )
26 ssel 3187 . . . . . . . . . . . . . . . . . . 19  |-  ( s 
C_  ( Jt  S )  ->  ( u  e.  s  ->  u  e.  ( Jt  S ) ) )
2716sseq2i 3216 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( S 
C_  X  <->  S  C_  U. J
)
28 uniexg 4533 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( J  e.  Top  ->  U. J  e.  _V )
29 ssexg 4176 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( S  C_  U. J  /\  U. J  e.  _V )  ->  S  e.  _V )
3029ancoms 439 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( U. J  e.  _V  /\  S  C_  U. J )  ->  S  e.  _V )
3128, 30sylan 457 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  S  e.  _V )
3227, 31sylan2b 461 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  _V )
33 elrest 13348 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( J  e.  Top  /\  S  e.  _V )  ->  ( u  e.  ( Jt  S )  <->  E. w  e.  J  u  =  ( w  i^i  S ) ) )
3432, 33syldan 456 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( u  e.  ( Jt  S )  <->  E. w  e.  J  u  =  ( w  i^i  S ) ) )
35 inss1 3402 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( w  i^i  S )  C_  w
36 sseq1 3212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( u  =  ( w  i^i 
S )  ->  (
u  C_  w  <->  ( w  i^i  S )  C_  w
) )
3735, 36mpbiri 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( u  =  ( w  i^i 
S )  ->  u  C_  w )
3837sselda 3193 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( u  =  ( w  i^i  S )  /\  t  e.  u )  ->  t  e.  w )
39383ad2antl3 1119 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  w  e.  J  /\  u  =  ( w  i^i  S ) )  /\  t  e.  u )  ->  t  e.  w )
40393adant2 974 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  w  e.  J  /\  u  =  ( w  i^i  S ) )  /\  u  e.  s  /\  t  e.  u )  ->  t  e.  w )
41 simp12 986 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  w  e.  J  /\  u  =  ( w  i^i  S ) )  /\  u  e.  s  /\  t  e.  u )  ->  w  e.  J )
42 eleq1 2356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( u  =  ( w  i^i 
S )  ->  (
u  e.  s  <->  ( w  i^i  S )  e.  s ) )
4342biimpa 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( u  =  ( w  i^i  S )  /\  u  e.  s )  ->  ( w  i^i  S
)  e.  s )
44433ad2antl3 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  w  e.  J  /\  u  =  ( w  i^i  S ) )  /\  u  e.  s )  ->  (
w  i^i  S )  e.  s )
45443adant3 975 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  w  e.  J  /\  u  =  ( w  i^i  S ) )  /\  u  e.  s  /\  t  e.  u )  ->  (
w  i^i  S )  e.  s )
46 ineq1 3376 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( y  =  w  ->  (
y  i^i  S )  =  ( w  i^i 
S ) )
4746eleq1d 2362 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  =  w  ->  (
( y  i^i  S
)  e.  s  <->  ( w  i^i  S )  e.  s ) )
4847elrab 2936 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( w  e.  { y  e.  J  |  ( y  i^i  S )  e.  s }  <->  ( w  e.  J  /\  (
w  i^i  S )  e.  s ) )
4941, 45, 48sylanbrc 645 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  w  e.  J  /\  u  =  ( w  i^i  S ) )  /\  u  e.  s  /\  t  e.  u )  ->  w  e.  { y  e.  J  |  ( y  i^i 
S )  e.  s } )
50 vex 2804 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  w  e. 
_V
51 eleq2 2357 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( v  =  w  ->  (
t  e.  v  <->  t  e.  w ) )
52 eleq1 2356 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( v  =  w  ->  (
v  e.  { y  e.  J  |  ( y  i^i  S )  e.  s }  <->  w  e.  { y  e.  J  | 
( y  i^i  S
)  e.  s } ) )
5351, 52anbi12d 691 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( v  =  w  ->  (
( t  e.  v  /\  v  e.  {
y  e.  J  | 
( y  i^i  S
)  e.  s } )  <->  ( t  e.  w  /\  w  e. 
{ y  e.  J  |  ( y  i^i 
S )  e.  s } ) ) )
5450, 53spcev 2888 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( t  e.  w  /\  w  e.  { y  e.  J  |  (
y  i^i  S )  e.  s } )  ->  E. v ( t  e.  v  /\  v  e. 
{ y  e.  J  |  ( y  i^i 
S )  e.  s } ) )
5540, 49, 54syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  w  e.  J  /\  u  =  ( w  i^i  S ) )  /\  u  e.  s  /\  t  e.  u )  ->  E. v
( t  e.  v  /\  v  e.  {
y  e.  J  | 
( y  i^i  S
)  e.  s } ) )
56553exp 1150 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  w  e.  J  /\  u  =  (
w  i^i  S )
)  ->  ( u  e.  s  ->  ( t  e.  u  ->  E. v
( t  e.  v  /\  v  e.  {
y  e.  J  | 
( y  i^i  S
)  e.  s } ) ) ) )
5756rexlimdv3a 2682 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( E. w  e.  J  u  =  ( w  i^i  S )  ->  ( u  e.  s  ->  ( t  e.  u  ->  E. v
( t  e.  v  /\  v  e.  {
y  e.  J  | 
( y  i^i  S
)  e.  s } ) ) ) ) )
5834, 57sylbid 206 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( u  e.  ( Jt  S )  ->  (
u  e.  s  -> 
( t  e.  u  ->  E. v ( t  e.  v  /\  v  e.  { y  e.  J  |  ( y  i^i 
S )  e.  s } ) ) ) ) )
5958com23 72 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( u  e.  s  ->  ( u  e.  ( Jt  S )  ->  (
t  e.  u  ->  E. v ( t  e.  v  /\  v  e. 
{ y  e.  J  |  ( y  i^i 
S )  e.  s } ) ) ) ) )
6059com4l 78 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  s  ->  (
u  e.  ( Jt  S )  ->  ( t  e.  u  ->  ( ( J  e.  Top  /\  S  C_  X )  ->  E. v ( t  e.  v  /\  v  e. 
{ y  e.  J  |  ( y  i^i 
S )  e.  s } ) ) ) ) )
6126, 60sylcom 25 . . . . . . . . . . . . . . . . . 18  |-  ( s 
C_  ( Jt  S )  ->  ( u  e.  s  ->  ( t  e.  u  ->  ( ( J  e.  Top  /\  S  C_  X )  ->  E. v ( t  e.  v  /\  v  e. 
{ y  e.  J  |  ( y  i^i 
S )  e.  s } ) ) ) ) )
6261com24 81 . . . . . . . . . . . . . . . . 17  |-  ( s 
C_  ( Jt  S )  ->  ( ( J  e.  Top  /\  S  C_  X )  ->  (
t  e.  u  -> 
( u  e.  s  ->  E. v ( t  e.  v  /\  v  e.  { y  e.  J  |  ( y  i^i 
S )  e.  s } ) ) ) ) )
6362impcom 419 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  C_  ( Jt  S ) )  ->  (
t  e.  u  -> 
( u  e.  s  ->  E. v ( t  e.  v  /\  v  e.  { y  e.  J  |  ( y  i^i 
S )  e.  s } ) ) ) )
6463imp3a 420 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  C_  ( Jt  S ) )  ->  (
( t  e.  u  /\  u  e.  s
)  ->  E. v
( t  e.  v  /\  v  e.  {
y  e.  J  | 
( y  i^i  S
)  e.  s } ) ) )
6564exlimdv 1626 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  C_  ( Jt  S ) )  ->  ( E. u ( t  e.  u  /\  u  e.  s )  ->  E. v
( t  e.  v  /\  v  e.  {
y  e.  J  | 
( y  i^i  S
)  e.  s } ) ) )
6665adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  s  C_  ( Jt  S ) )  /\  S  =  U. s
)  ->  ( E. u ( t  e.  u  /\  u  e.  s )  ->  E. v
( t  e.  v  /\  v  e.  {
y  e.  J  | 
( y  i^i  S
)  e.  s } ) ) )
6725, 66sylbid 206 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  s  C_  ( Jt  S ) )  /\  S  =  U. s
)  ->  ( t  e.  S  ->  E. v
( t  e.  v  /\  v  e.  {
y  e.  J  | 
( y  i^i  S
)  e.  s } ) ) )
6867ex 423 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  C_  ( Jt  S ) )  ->  ( S  =  U. s  ->  ( t  e.  S  ->  E. v ( t  e.  v  /\  v  e.  { y  e.  J  |  ( y  i^i 
S )  e.  s } ) ) ) )
6921, 68sylan2b 461 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  -> 
( S  =  U. s  ->  ( t  e.  S  ->  E. v
( t  e.  v  /\  v  e.  {
y  e.  J  | 
( y  i^i  S
)  e.  s } ) ) ) )
7069imp 418 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  ( t  e.  S  ->  E. v
( t  e.  v  /\  v  e.  {
y  e.  J  | 
( y  i^i  S
)  e.  s } ) ) )
71 eluni 3846 . . . . . . . . 9  |-  ( t  e.  U. { y  e.  J  |  ( y  i^i  S )  e.  s }  <->  E. v
( t  e.  v  /\  v  e.  {
y  e.  J  | 
( y  i^i  S
)  e.  s } ) )
7270, 71syl6ibr 218 . . . . . . . 8  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  ( t  e.  S  ->  t  e. 
U. { y  e.  J  |  ( y  i^i  S )  e.  s } ) )
7372ssrdv 3198 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  S  C_  U. {
y  e.  J  | 
( y  i^i  S
)  e.  s } )
74 pm2.27 35 . . . . . . . . 9  |-  ( S 
C_  U. { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  (
( S  C_  U. {
y  e.  J  | 
( y  i^i  S
)  e.  s }  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  i^i  Fin ) S  C_  U. d
)  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  i^i  Fin ) S  C_  U. d
) )
75 elin 3371 . . . . . . . . . . 11  |-  ( d  e.  ( ~P {
y  e.  J  | 
( y  i^i  S
)  e.  s }  i^i  Fin )  <->  ( d  e.  ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  /\  d  e.  Fin ) )
76 vex 2804 . . . . . . . . . . . . . . . . . 18  |-  t  e. 
_V
77 eqeq1 2302 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  t  ->  (
x  =  ( z  i^i  S )  <->  t  =  ( z  i^i  S
) ) )
7877rexbidv 2577 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  t  ->  ( E. z  e.  d  x  =  ( z  i^i  S )  <->  E. z  e.  d  t  =  ( z  i^i  S
) ) )
7976, 78elab 2927 . . . . . . . . . . . . . . . . 17  |-  ( t  e.  { x  |  E. z  e.  d  x  =  ( z  i^i  S ) }  <->  E. z  e.  d 
t  =  ( z  i^i  S ) )
80 vex 2804 . . . . . . . . . . . . . . . . . . . . 21  |-  d  e. 
_V
8180elpw 3644 . . . . . . . . . . . . . . . . . . . 20  |-  ( d  e.  ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  <->  d  C_  { y  e.  J  | 
( y  i^i  S
)  e.  s } )
82 ssel 3187 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( d 
C_  { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  (
z  e.  d  -> 
z  e.  { y  e.  J  |  ( y  i^i  S )  e.  s } ) )
83 ineq1 3376 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( y  =  z  ->  (
y  i^i  S )  =  ( z  i^i 
S ) )
8483eleq1d 2362 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  z  ->  (
( y  i^i  S
)  e.  s  <->  ( z  i^i  S )  e.  s ) )
8584elrab 2936 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  { y  e.  J  |  ( y  i^i  S )  e.  s }  <->  ( z  e.  J  /\  (
z  i^i  S )  e.  s ) )
86 eleq1a 2365 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  i^i  S )  e.  s  ->  (
t  =  ( z  i^i  S )  -> 
t  e.  s ) )
8786adantl 452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( z  e.  J  /\  ( z  i^i  S
)  e.  s )  ->  ( t  =  ( z  i^i  S
)  ->  t  e.  s ) )
8885, 87sylbi 187 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  e.  { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  (
t  =  ( z  i^i  S )  -> 
t  e.  s ) )
8982, 88syl6 29 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( d 
C_  { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  (
z  e.  d  -> 
( t  =  ( z  i^i  S )  ->  t  e.  s ) ) )
9089a1d 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d 
C_  { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  (
( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  /\  S  = 
U. s )  -> 
( z  e.  d  ->  ( t  =  ( z  i^i  S
)  ->  t  e.  s ) ) ) )
9190a1d 22 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d 
C_  { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  ( S  C_  U. d  -> 
( ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  ( z  e.  d  ->  ( t  =  ( z  i^i 
S )  ->  t  e.  s ) ) ) ) )
9291adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( d  C_  { y  e.  J  |  (
y  i^i  S )  e.  s }  /\  d  e.  Fin )  ->  ( S  C_  U. d  -> 
( ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  ( z  e.  d  ->  ( t  =  ( z  i^i 
S )  ->  t  e.  s ) ) ) ) )
9381, 92sylanb 458 . . . . . . . . . . . . . . . . . . 19  |-  ( ( d  e.  ~P {
y  e.  J  | 
( y  i^i  S
)  e.  s }  /\  d  e.  Fin )  ->  ( S  C_  U. d  ->  ( (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  ( z  e.  d  ->  ( t  =  ( z  i^i 
S )  ->  t  e.  s ) ) ) ) )
94933imp 1145 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  (
z  e.  d  -> 
( t  =  ( z  i^i  S )  ->  t  e.  s ) ) )
9594rexlimdv 2679 . . . . . . . . . . . . . . . . 17  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  ( E. z  e.  d 
t  =  ( z  i^i  S )  -> 
t  e.  s ) )
9679, 95syl5bi 208 . . . . . . . . . . . . . . . 16  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  (
t  e.  { x  |  E. z  e.  d  x  =  ( z  i^i  S ) }  ->  t  e.  s ) )
9796ssrdv 3198 . . . . . . . . . . . . . . 15  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  { x  |  E. z  e.  d  x  =  ( z  i^i  S ) } 
C_  s )
9880abrexex 5779 . . . . . . . . . . . . . . . 16  |-  { x  |  E. z  e.  d  x  =  ( z  i^i  S ) }  e.  _V
9998elpw 3644 . . . . . . . . . . . . . . 15  |-  ( { x  |  E. z  e.  d  x  =  ( z  i^i  S
) }  e.  ~P s 
<->  { x  |  E. z  e.  d  x  =  ( z  i^i 
S ) }  C_  s )
10097, 99sylibr 203 . . . . . . . . . . . . . 14  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  { x  |  E. z  e.  d  x  =  ( z  i^i  S ) }  e.  ~P s )
101 abrexfi 7172 . . . . . . . . . . . . . . . 16  |-  ( d  e.  Fin  ->  { x  |  E. z  e.  d  x  =  ( z  i^i  S ) }  e.  Fin )
102101ad2antlr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d )  ->  { x  |  E. z  e.  d  x  =  ( z  i^i 
S ) }  e.  Fin )
1031023adant3 975 . . . . . . . . . . . . . 14  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  { x  |  E. z  e.  d  x  =  ( z  i^i  S ) }  e.  Fin )
104 elin 3371 . . . . . . . . . . . . . 14  |-  ( { x  |  E. z  e.  d  x  =  ( z  i^i  S
) }  e.  ( ~P s  i^i  Fin ) 
<->  ( { x  |  E. z  e.  d  x  =  ( z  i^i  S ) }  e.  ~P s  /\  { x  |  E. z  e.  d  x  =  ( z  i^i  S
) }  e.  Fin ) )
105100, 103, 104sylanbrc 645 . . . . . . . . . . . . 13  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  { x  |  E. z  e.  d  x  =  ( z  i^i  S ) }  e.  ( ~P s  i^i  Fin ) )
106 dfss 3180 . . . . . . . . . . . . . . . . 17  |-  ( S 
C_  U. d  <->  S  =  ( S  i^i  U. d
) )
107106biimpi 186 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  U. d  ->  S  =  ( S  i^i  U. d ) )
108 uniiun 3971 . . . . . . . . . . . . . . . . . 18  |-  U. d  =  U_ z  e.  d  z
109108ineq2i 3380 . . . . . . . . . . . . . . . . 17  |-  ( S  i^i  U. d )  =  ( S  i^i  U_ z  e.  d  z )
110 iunin2 3982 . . . . . . . . . . . . . . . . 17  |-  U_ z  e.  d  ( S  i^i  z )  =  ( S  i^i  U_ z  e.  d  z )
111 incom 3374 . . . . . . . . . . . . . . . . . . 19  |-  ( S  i^i  z )  =  ( z  i^i  S
)
112111a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  d  ->  ( S  i^i  z )  =  ( z  i^i  S
) )
113112iuneq2i 3939 . . . . . . . . . . . . . . . . 17  |-  U_ z  e.  d  ( S  i^i  z )  =  U_ z  e.  d  (
z  i^i  S )
114109, 110, 1133eqtr2i 2322 . . . . . . . . . . . . . . . 16  |-  ( S  i^i  U. d )  =  U_ z  e.  d  ( z  i^i 
S )
115107, 114syl6eq 2344 . . . . . . . . . . . . . . 15  |-  ( S 
C_  U. d  ->  S  =  U_ z  e.  d  ( z  i^i  S
) )
1161153ad2ant2 977 . . . . . . . . . . . . . 14  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  S  =  U_ z  e.  d  ( z  i^i  S
) )
11718ad2antrl 708 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  U. d  /\  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  /\  S  = 
U. s ) )  ->  S  =  U. ( Jt  S ) )
1181173adant1 973 . . . . . . . . . . . . . 14  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  S  =  U. ( Jt  S ) )
119 vex 2804 . . . . . . . . . . . . . . . . 17  |-  z  e. 
_V
120119inex1 4171 . . . . . . . . . . . . . . . 16  |-  ( z  i^i  S )  e. 
_V
121120dfiun2 3953 . . . . . . . . . . . . . . 15  |-  U_ z  e.  d  ( z  i^i  S )  =  U. { x  |  E. z  e.  d  x  =  ( z  i^i 
S ) }
122121a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  U_ z  e.  d  ( z  i^i  S )  =  U. { x  |  E. z  e.  d  x  =  ( z  i^i 
S ) } )
123116, 118, 1223eqtr3d 2336 . . . . . . . . . . . . 13  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  U. ( Jt  S )  =  U. { x  |  E. z  e.  d  x  =  ( z  i^i 
S ) } )
124 unieq 3852 . . . . . . . . . . . . . . 15  |-  ( t  =  { x  |  E. z  e.  d  x  =  ( z  i^i  S ) }  ->  U. t  =  U. { x  |  E. z  e.  d  x  =  ( z  i^i 
S ) } )
125124eqeq2d 2307 . . . . . . . . . . . . . 14  |-  ( t  =  { x  |  E. z  e.  d  x  =  ( z  i^i  S ) }  ->  ( U. ( Jt  S )  =  U. t 
<-> 
U. ( Jt  S )  =  U. { x  |  E. z  e.  d  x  =  ( z  i^i  S ) } ) )
126125rspcev 2897 . . . . . . . . . . . . 13  |-  ( ( { x  |  E. z  e.  d  x  =  ( z  i^i 
S ) }  e.  ( ~P s  i^i  Fin )  /\  U. ( Jt  S )  =  U. {
x  |  E. z  e.  d  x  =  ( z  i^i  S
) } )  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t )
127105, 123, 126syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( d  e.  ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  /\  d  e. 
Fin )  /\  S  C_ 
U. d  /\  (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
) )  ->  E. t  e.  ( ~P s  i^i 
Fin ) U. ( Jt  S )  =  U. t )
1281273exp 1150 . . . . . . . . . . 11  |-  ( ( d  e.  ~P {
y  e.  J  | 
( y  i^i  S
)  e.  s }  /\  d  e.  Fin )  ->  ( S  C_  U. d  ->  ( (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  E. t  e.  ( ~P s  i^i 
Fin ) U. ( Jt  S )  =  U. t ) ) )
12975, 128sylbi 187 . . . . . . . . . 10  |-  ( d  e.  ( ~P {
y  e.  J  | 
( y  i^i  S
)  e.  s }  i^i  Fin )  -> 
( S  C_  U. d  ->  ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  E. t  e.  ( ~P s  i^i 
Fin ) U. ( Jt  S )  =  U. t ) ) )
130129rexlimiv 2674 . . . . . . . . 9  |-  ( E. d  e.  ( ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  i^i  Fin ) S  C_  U. d  -> 
( ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  E. t  e.  ( ~P s  i^i 
Fin ) U. ( Jt  S )  =  U. t ) )
13174, 130syl6 29 . . . . . . . 8  |-  ( S 
C_  U. { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  (
( S  C_  U. {
y  e.  J  | 
( y  i^i  S
)  e.  s }  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  i^i  Fin ) S  C_  U. d
)  ->  ( (
( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  E. t  e.  ( ~P s  i^i 
Fin ) U. ( Jt  S )  =  U. t ) ) )
132131com3r 73 . . . . . . 7  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  ( S  C_ 
U. { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  (
( S  C_  U. {
y  e.  J  | 
( y  i^i  S
)  e.  s }  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  i^i  Fin ) S  C_  U. d
)  ->  E. t  e.  ( ~P s  i^i 
Fin ) U. ( Jt  S )  =  U. t ) ) )
13373, 132mpd 14 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  s  e.  ~P ( Jt  S ) )  /\  S  =  U. s
)  ->  ( ( S  C_  U. { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i 
S )  e.  s }  i^i  Fin ) S  C_  U. d )  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) )
134133ex 423 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  -> 
( S  =  U. s  ->  ( ( S 
C_  U. { y  e.  J  |  ( y  i^i  S )  e.  s }  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  i^i  Fin ) S  C_  U. d
)  ->  E. t  e.  ( ~P s  i^i 
Fin ) U. ( Jt  S )  =  U. t ) ) )
13519, 134sylbird 226 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  -> 
( U. ( Jt  S )  =  U. s  ->  ( ( S  C_  U. { y  e.  J  |  ( y  i^i 
S )  e.  s }  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  i^i  Fin ) S  C_  U. d
)  ->  E. t  e.  ( ~P s  i^i 
Fin ) U. ( Jt  S )  =  U. t ) ) )
136135com23 72 . . 3  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  -> 
( ( S  C_  U. { y  e.  J  |  ( y  i^i 
S )  e.  s }  ->  E. d  e.  ( ~P { y  e.  J  |  ( y  i^i  S )  e.  s }  i^i  Fin ) S  C_  U. d
)  ->  ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) )
13715, 136syld 40 . 2  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  s  e.  ~P ( Jt  S ) )  -> 
( A. c  e. 
~P  J ( S 
C_  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d )  ->  ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) )
138137ralrimdva 2646 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. c  e. 
~P  J ( S 
C_  U. c  ->  E. d  e.  ( ~P c  i^i 
Fin ) S  C_  U. d )  ->  A. s  e.  ~P  ( Jt  S ) ( U. ( Jt  S )  =  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) U. ( Jt  S )  =  U. t ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   U.cuni 3843   U_ciun 3921  (class class class)co 5874   Fincfn 6879   ↾t crest 13341   Topctop 16647
This theorem is referenced by:  cmpsub  17143
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-fin 6883  df-fi 7181  df-rest 13343  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655
  Copyright terms: Public domain W3C validator