MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmsss Unicode version

Theorem cmsss 18987
Description: The restriction of a complete metric space is complete iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
cmsss.h  |-  K  =  ( Ms  A )
cmsss.x  |-  X  =  ( Base `  M
)
cmsss.j  |-  J  =  ( TopOpen `  M )
Assertion
Ref Expression
cmsss  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( K  e. CMetSp  <->  A  e.  ( Clsd `  J ) ) )

Proof of Theorem cmsss
StepHypRef Expression
1 simpr 447 . . . . . . 7  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  A  C_  X )
2 xpss12 4895 . . . . . . 7  |-  ( ( A  C_  X  /\  A  C_  X )  -> 
( A  X.  A
)  C_  ( X  X.  X ) )
31, 2sylancom 648 . . . . . 6  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( A  X.  A )  C_  ( X  X.  X
) )
4 resabs1 5087 . . . . . 6  |-  ( ( A  X.  A ) 
C_  ( X  X.  X )  ->  (
( ( dist `  M
)  |`  ( X  X.  X ) )  |`  ( A  X.  A
) )  =  ( ( dist `  M
)  |`  ( A  X.  A ) ) )
53, 4syl 15 . . . . 5  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( ( dist `  M
)  |`  ( X  X.  X ) )  |`  ( A  X.  A
) )  =  ( ( dist `  M
)  |`  ( A  X.  A ) ) )
6 cmsss.x . . . . . . . . . 10  |-  X  =  ( Base `  M
)
7 fvex 5646 . . . . . . . . . 10  |-  ( Base `  M )  e.  _V
86, 7eqeltri 2436 . . . . . . . . 9  |-  X  e. 
_V
98ssex 4260 . . . . . . . 8  |-  ( A 
C_  X  ->  A  e.  _V )
109adantl 452 . . . . . . 7  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  A  e.  _V )
11 cmsss.h . . . . . . . 8  |-  K  =  ( Ms  A )
12 eqid 2366 . . . . . . . 8  |-  ( dist `  M )  =  (
dist `  M )
1311, 12ressds 13528 . . . . . . 7  |-  ( A  e.  _V  ->  ( dist `  M )  =  ( dist `  K
) )
1410, 13syl 15 . . . . . 6  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( dist `  M )  =  ( dist `  K
) )
1511, 6ressbas2 13407 . . . . . . . 8  |-  ( A 
C_  X  ->  A  =  ( Base `  K
) )
1615adantl 452 . . . . . . 7  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  A  =  ( Base `  K
) )
1716, 16xpeq12d 4817 . . . . . 6  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( A  X.  A )  =  ( ( Base `  K
)  X.  ( Base `  K ) ) )
1814, 17reseq12d 5059 . . . . 5  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( dist `  M )  |`  ( A  X.  A
) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
195, 18eqtrd 2398 . . . 4  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( ( dist `  M
)  |`  ( X  X.  X ) )  |`  ( A  X.  A
) )  =  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) ) )
2016fveq2d 5636 . . . 4  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( CMet `  A )  =  ( CMet `  ( Base `  K ) ) )
2119, 20eleq12d 2434 . . 3  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( ( ( dist `  M )  |`  ( X  X.  X ) )  |`  ( A  X.  A
) )  e.  (
CMet `  A )  <->  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  e.  ( CMet `  ( Base `  K
) ) ) )
22 eqid 2366 . . . . . 6  |-  ( (
dist `  M )  |`  ( X  X.  X
) )  =  ( ( dist `  M
)  |`  ( X  X.  X ) )
236, 22cmscmet 18983 . . . . 5  |-  ( M  e. CMetSp  ->  ( ( dist `  M )  |`  ( X  X.  X ) )  e.  ( CMet `  X
) )
2423adantr 451 . . . 4  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( dist `  M )  |`  ( X  X.  X
) )  e.  (
CMet `  X )
)
25 eqid 2366 . . . . 5  |-  ( MetOpen `  ( ( dist `  M
)  |`  ( X  X.  X ) ) )  =  ( MetOpen `  (
( dist `  M )  |`  ( X  X.  X
) ) )
2625cmetss 18955 . . . 4  |-  ( ( ( dist `  M
)  |`  ( X  X.  X ) )  e.  ( CMet `  X
)  ->  ( (
( ( dist `  M
)  |`  ( X  X.  X ) )  |`  ( A  X.  A
) )  e.  (
CMet `  A )  <->  A  e.  ( Clsd `  ( MetOpen
`  ( ( dist `  M )  |`  ( X  X.  X ) ) ) ) ) )
2724, 26syl 15 . . 3  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( ( ( dist `  M )  |`  ( X  X.  X ) )  |`  ( A  X.  A
) )  e.  (
CMet `  A )  <->  A  e.  ( Clsd `  ( MetOpen
`  ( ( dist `  M )  |`  ( X  X.  X ) ) ) ) ) )
2821, 27bitr3d 246 . 2  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  (
( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  e.  ( CMet `  ( Base `  K
) )  <->  A  e.  ( Clsd `  ( MetOpen `  (
( dist `  M )  |`  ( X  X.  X
) ) ) ) ) )
29 cmsms 18985 . . . 4  |-  ( M  e. CMetSp  ->  M  e.  MetSp )
30 ressms 18285 . . . . 5  |-  ( ( M  e.  MetSp  /\  A  e.  _V )  ->  ( Ms  A )  e.  MetSp )
3111, 30syl5eqel 2450 . . . 4  |-  ( ( M  e.  MetSp  /\  A  e.  _V )  ->  K  e.  MetSp )
3229, 9, 31syl2an 463 . . 3  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  K  e.  MetSp )
33 eqid 2366 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
34 eqid 2366 . . . . 5  |-  ( (
dist `  K )  |`  ( ( Base `  K
)  X.  ( Base `  K ) ) )  =  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )
3533, 34iscms 18982 . . . 4  |-  ( K  e. CMetSp 
<->  ( K  e.  MetSp  /\  ( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  e.  ( CMet `  ( Base `  K
) ) ) )
3635baib 871 . . 3  |-  ( K  e.  MetSp  ->  ( K  e. CMetSp  <-> 
( ( dist `  K
)  |`  ( ( Base `  K )  X.  ( Base `  K ) ) )  e.  ( CMet `  ( Base `  K
) ) ) )
3732, 36syl 15 . 2  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( K  e. CMetSp  <->  ( ( dist `  K )  |`  (
( Base `  K )  X.  ( Base `  K
) ) )  e.  ( CMet `  ( Base `  K ) ) ) )
3829adantr 451 . . . . 5  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  M  e.  MetSp )
39 cmsss.j . . . . . 6  |-  J  =  ( TopOpen `  M )
4039, 6, 22mstopn 18211 . . . . 5  |-  ( M  e.  MetSp  ->  J  =  ( MetOpen `  ( ( dist `  M )  |`  ( X  X.  X
) ) ) )
4138, 40syl 15 . . . 4  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  J  =  ( MetOpen `  (
( dist `  M )  |`  ( X  X.  X
) ) ) )
4241fveq2d 5636 . . 3  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( Clsd `  J )  =  ( Clsd `  ( MetOpen
`  ( ( dist `  M )  |`  ( X  X.  X ) ) ) ) )
4342eleq2d 2433 . 2  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( A  e.  ( Clsd `  J )  <->  A  e.  ( Clsd `  ( MetOpen `  (
( dist `  M )  |`  ( X  X.  X
) ) ) ) ) )
4428, 37, 433bitr4d 276 1  |-  ( ( M  e. CMetSp  /\  A  C_  X )  ->  ( K  e. CMetSp  <->  A  e.  ( Clsd `  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715   _Vcvv 2873    C_ wss 3238    X. cxp 4790    |` cres 4794   ` cfv 5358  (class class class)co 5981   Basecbs 13356   ↾s cress 13357   distcds 13425   TopOpenctopn 13536   MetOpencmopn 16584   Clsdccld 16970   MetSpcmt 18096   CMetcms 18895  CMetSpccms 18969
This theorem is referenced by:  lssbn  18988  resscdrg  18990  srabn  18992  ishl2  19002  pjthlem2  19017  recms  23939
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-fi 7312  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-q 10468  df-rp 10506  df-xneg 10603  df-xadd 10604  df-xmul 10605  df-ico 10815  df-icc 10816  df-ndx 13359  df-slot 13360  df-base 13361  df-sets 13362  df-ress 13363  df-tset 13435  df-ds 13438  df-rest 13537  df-topn 13538  df-topgen 13554  df-xmet 16586  df-met 16587  df-bl 16588  df-mopn 16589  df-fbas 16590  df-fg 16591  df-top 16853  df-bases 16855  df-topon 16856  df-topsp 16857  df-cld 16973  df-ntr 16974  df-cls 16975  df-nei 17052  df-haus 17260  df-fil 17754  df-flim 17847  df-xms 18098  df-ms 18099  df-cfil 18896  df-cmet 18898  df-cms 18972
  Copyright terms: Public domain W3C validator