Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmt2N Unicode version

Theorem cmt2N 30062
Description: Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (cmcm2i 22188 analog.) (Contributed by NM, 8-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmt2.b  |-  B  =  ( Base `  K
)
cmt2.o  |-  ._|_  =  ( oc `  K )
cmt2.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
cmt2N  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X C (  ._|_  `  Y ) ) )

Proof of Theorem cmt2N
StepHypRef Expression
1 omllat 30054 . . . . . 6  |-  ( K  e.  OML  ->  K  e.  Lat )
213ad2ant1 976 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
3 cmt2.b . . . . . . 7  |-  B  =  ( Base `  K
)
4 eqid 2296 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
53, 4latmcl 14173 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  e.  B )
61, 5syl3an1 1215 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  e.  B )
7 simp2 956 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  X  e.  B )
8 omlop 30053 . . . . . . . 8  |-  ( K  e.  OML  ->  K  e.  OP )
983ad2ant1 976 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
10 simp3 957 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
11 cmt2.o . . . . . . . 8  |-  ._|_  =  ( oc `  K )
123, 11opoccl 30006 . . . . . . 7  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
139, 10, 12syl2anc 642 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
143, 4latmcl 14173 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X ( meet `  K
) (  ._|_  `  Y
) )  e.  B
)
152, 7, 13, 14syl3anc 1182 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) (  ._|_  `  Y ) )  e.  B )
16 eqid 2296 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
173, 16latjcom 14181 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X ( meet `  K
) Y )  e.  B  /\  ( X ( meet `  K
) (  ._|_  `  Y
) )  e.  B
)  ->  ( ( X ( meet `  K
) Y ) (
join `  K )
( X ( meet `  K ) (  ._|_  `  Y ) ) )  =  ( ( X ( meet `  K
) (  ._|_  `  Y
) ) ( join `  K ) ( X ( meet `  K
) Y ) ) )
182, 6, 15, 17syl3anc 1182 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K ) Y ) ( join `  K ) ( X ( meet `  K
) (  ._|_  `  Y
) ) )  =  ( ( X (
meet `  K )
(  ._|_  `  Y )
) ( join `  K
) ( X (
meet `  K ) Y ) ) )
193, 11opococ 30007 . . . . . . 7  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
209, 10, 19syl2anc 642 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
2120oveq2d 5890 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) (  ._|_  `  (  ._|_  `  Y ) ) )  =  ( X ( meet `  K
) Y ) )
2221oveq2d 5890 . . . 4  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K )
(  ._|_  `  Y )
) ( join `  K
) ( X (
meet `  K )
(  ._|_  `  (  ._|_  `  Y ) ) ) )  =  ( ( X ( meet `  K
) (  ._|_  `  Y
) ) ( join `  K ) ( X ( meet `  K
) Y ) ) )
2318, 22eqtr4d 2331 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K ) Y ) ( join `  K ) ( X ( meet `  K
) (  ._|_  `  Y
) ) )  =  ( ( X (
meet `  K )
(  ._|_  `  Y )
) ( join `  K
) ( X (
meet `  K )
(  ._|_  `  (  ._|_  `  Y ) ) ) ) )
2423eqeq2d 2307 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  =  ( ( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
(  ._|_  `  Y )
) )  <->  X  =  ( ( X (
meet `  K )
(  ._|_  `  Y )
) ( join `  K
) ( X (
meet `  K )
(  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
25 cmt2.c . . 3  |-  C  =  ( cm `  K
)
263, 16, 4, 11, 25cmtvalN 30023 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X ( meet `  K
) Y ) (
join `  K )
( X ( meet `  K ) (  ._|_  `  Y ) ) ) ) )
273, 16, 4, 11, 25cmtvalN 30023 . . 3  |-  ( ( K  e.  OML  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X C (  ._|_  `  Y
)  <->  X  =  (
( X ( meet `  K ) (  ._|_  `  Y ) ) (
join `  K )
( X ( meet `  K ) (  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
2813, 27syld3an3 1227 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C ( 
._|_  `  Y )  <->  X  =  ( ( X (
meet `  K )
(  ._|_  `  Y )
) ( join `  K
) ( X (
meet `  K )
(  ._|_  `  (  ._|_  `  Y ) ) ) ) ) )
2924, 26, 283bitr4d 276 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X C (  ._|_  `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   occoc 13232   joincjn 14094   meetcmee 14095   Latclat 14167   OPcops 29984   cmccmtN 29985   OMLcoml 29987
This theorem is referenced by:  cmt3N  30063  cmt4N  30064  omlfh1N  30070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-join 14126  df-lat 14168  df-oposet 29988  df-cmtN 29989  df-ol 29990  df-oml 29991
  Copyright terms: Public domain W3C validator