Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtcomlemN Unicode version

Theorem cmtcomlemN 29438
Description: Lemma for cmtcomN 29439. (cmcmlem 22170 analog.) (Contributed by NM, 7-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtcom.b  |-  B  =  ( Base `  K
)
cmtcom.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
cmtcomlemN  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  ->  Y C X ) )

Proof of Theorem cmtcomlemN
StepHypRef Expression
1 omllat 29432 . . . . . . . . . . . 12  |-  ( K  e.  OML  ->  K  e.  Lat )
213ad2ant1 976 . . . . . . . . . . 11  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Lat )
3 omlop 29431 . . . . . . . . . . . . 13  |-  ( K  e.  OML  ->  K  e.  OP )
4 cmtcom.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  K
)
5 eqid 2283 . . . . . . . . . . . . . 14  |-  ( oc
`  K )  =  ( oc `  K
)
64, 5opoccl 29384 . . . . . . . . . . . . 13  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
73, 6sylan 457 . . . . . . . . . . . 12  |-  ( ( K  e.  OML  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
873adant3 975 . . . . . . . . . . 11  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
9 simp3 957 . . . . . . . . . . 11  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y  e.  B )
10 eqid 2283 . . . . . . . . . . . 12  |-  ( le
`  K )  =  ( le `  K
)
11 eqid 2283 . . . . . . . . . . . 12  |-  ( join `  K )  =  (
join `  K )
124, 10, 11latlej2 14167 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  Y  e.  B )  ->  Y ( le `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) )
132, 8, 9, 12syl3anc 1182 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  Y ( le `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) )
144, 11latjcl 14156 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y )  e.  B )
152, 8, 9, 14syl3anc 1182 . . . . . . . . . . 11  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y )  e.  B )
16 eqid 2283 . . . . . . . . . . . 12  |-  ( meet `  K )  =  (
meet `  K )
174, 10, 16latleeqm2 14186 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y )  e.  B )  -> 
( Y ( le
`  K ) ( ( ( oc `  K ) `  X
) ( join `  K
) Y )  <->  ( (
( ( oc `  K ) `  X
) ( join `  K
) Y ) (
meet `  K ) Y )  =  Y ) )
182, 9, 15, 17syl3anc 1182 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y ( le
`  K ) ( ( ( oc `  K ) `  X
) ( join `  K
) Y )  <->  ( (
( ( oc `  K ) `  X
) ( join `  K
) Y ) (
meet `  K ) Y )  =  Y ) )
1913, 18mpbid 201 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( ( oc `  K ) `
 X ) (
join `  K ) Y ) ( meet `  K ) Y )  =  Y )
2019oveq2d 5874 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( ( oc `  K ) `
 X ) (
join `  K )
( ( oc `  K ) `  Y
) ) ( meet `  K ) ( ( ( ( oc `  K ) `  X
) ( join `  K
) Y ) (
meet `  K ) Y ) )  =  ( ( ( ( oc `  K ) `
 X ) (
join `  K )
( ( oc `  K ) `  Y
) ) ( meet `  K ) Y ) )
21 omlol 29430 . . . . . . . . . 10  |-  ( K  e.  OML  ->  K  e.  OL )
22213ad2ant1 976 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OL )
2333ad2ant1 976 . . . . . . . . . . 11  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OP )
244, 5opoccl 29384 . . . . . . . . . . 11  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  ( ( oc `  K ) `  Y
)  e.  B )
2523, 9, 24syl2anc 642 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  Y
)  e.  B )
264, 11latjcl 14156 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( oc `  K ) `  Y
)  e.  B )  ->  ( ( ( oc `  K ) `
 X ) (
join `  K )
( ( oc `  K ) `  Y
) )  e.  B
)
272, 8, 25, 26syl3anc 1182 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  X ) ( join `  K ) ( ( oc `  K ) `
 Y ) )  e.  B )
284, 16latmassOLD 29419 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( ( ( ( oc `  K ) `
 X ) (
join `  K )
( ( oc `  K ) `  Y
) )  e.  B  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y )  e.  B  /\  Y  e.  B ) )  -> 
( ( ( ( ( oc `  K
) `  X )
( join `  K )
( ( oc `  K ) `  Y
) ) ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) ) (
meet `  K ) Y )  =  ( ( ( ( oc
`  K ) `  X ) ( join `  K ) ( ( oc `  K ) `
 Y ) ) ( meet `  K
) ( ( ( ( oc `  K
) `  X )
( join `  K ) Y ) ( meet `  K ) Y ) ) )
2922, 27, 15, 9, 28syl13anc 1184 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( ( ( oc `  K
) `  X )
( join `  K )
( ( oc `  K ) `  Y
) ) ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) ) (
meet `  K ) Y )  =  ( ( ( ( oc
`  K ) `  X ) ( join `  K ) ( ( oc `  K ) `
 Y ) ) ( meet `  K
) ( ( ( ( oc `  K
) `  X )
( join `  K ) Y ) ( meet `  K ) Y ) ) )
304, 11, 16, 5oldmm1 29407 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X ( meet `  K
) Y ) )  =  ( ( ( oc `  K ) `
 X ) (
join `  K )
( ( oc `  K ) `  Y
) ) )
3121, 30syl3an1 1215 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  ( X ( meet `  K
) Y ) )  =  ( ( ( oc `  K ) `
 X ) (
join `  K )
( ( oc `  K ) `  Y
) ) )
3231oveq1d 5873 . . . . . . . 8  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  ( X ( meet `  K
) Y ) ) ( meet `  K
) Y )  =  ( ( ( ( oc `  K ) `
 X ) (
join `  K )
( ( oc `  K ) `  Y
) ) ( meet `  K ) Y ) )
3320, 29, 323eqtr4rd 2326 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  ( X ( meet `  K
) Y ) ) ( meet `  K
) Y )  =  ( ( ( ( ( oc `  K
) `  X )
( join `  K )
( ( oc `  K ) `  Y
) ) ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) ) (
meet `  K ) Y ) )
3433adantr 451 . . . . . 6  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  =  (
( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )  ->  ( ( ( oc `  K ) `
 ( X (
meet `  K ) Y ) ) (
meet `  K ) Y )  =  ( ( ( ( ( oc `  K ) `
 X ) (
join `  K )
( ( oc `  K ) `  Y
) ) ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) ) (
meet `  K ) Y ) )
354, 11, 16, 5oldmj4 29414 . . . . . . . . . . . . 13  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) ( ( oc
`  K ) `  Y ) ) )  =  ( X (
meet `  K ) Y ) )
3621, 35syl3an1 1215 . . . . . . . . . . . 12  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) ( ( oc
`  K ) `  Y ) ) )  =  ( X (
meet `  K ) Y ) )
374, 11, 16, 5oldmj2 29412 . . . . . . . . . . . . 13  |-  ( ( K  e.  OL  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) Y ) )  =  ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) )
3821, 37syl3an1 1215 . . . . . . . . . . . 12  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) Y ) )  =  ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) )
3936, 38oveq12d 5876 . . . . . . . . . . 11  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) ( ( oc `  K ) `
 Y ) ) ) ( join `  K
) ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y ) ) )  =  ( ( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )
4039eqeq2d 2294 . . . . . . . . . 10  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  =  ( ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) ( ( oc
`  K ) `  Y ) ) ) ( join `  K
) ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y ) ) )  <->  X  =  ( ( X (
meet `  K ) Y ) ( join `  K ) ( X ( meet `  K
) ( ( oc
`  K ) `  Y ) ) ) ) )
4140biimpar 471 . . . . . . . . 9  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  =  (
( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )  ->  X  =  ( ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) ( ( oc
`  K ) `  Y ) ) ) ( join `  K
) ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y ) ) ) )
4241fveq2d 5529 . . . . . . . 8  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  =  (
( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )  ->  ( ( oc
`  K ) `  X )  =  ( ( oc `  K
) `  ( (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
( ( oc `  K ) `  Y
) ) ) (
join `  K )
( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) Y ) ) ) ) )
434, 11, 16, 5oldmj4 29414 . . . . . . . . . 10  |-  ( ( K  e.  OL  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) ( ( oc `  K ) `
 Y ) )  e.  B  /\  (
( ( oc `  K ) `  X
) ( join `  K
) Y )  e.  B )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
( ( oc `  K ) `  Y
) ) ) (
join `  K )
( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) Y ) ) ) )  =  ( ( ( ( oc
`  K ) `  X ) ( join `  K ) ( ( oc `  K ) `
 Y ) ) ( meet `  K
) ( ( ( oc `  K ) `
 X ) (
join `  K ) Y ) ) )
4422, 27, 15, 43syl3anc 1182 . . . . . . . . 9  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( oc `  K ) `  (
( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) ( ( oc
`  K ) `  Y ) ) ) ( join `  K
) ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y ) ) ) )  =  ( ( ( ( oc `  K ) `
 X ) (
join `  K )
( ( oc `  K ) `  Y
) ) ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) ) )
4544adantr 451 . . . . . . . 8  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  =  (
( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )  ->  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) ( ( oc `  K ) `
 Y ) ) ) ( join `  K
) ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) Y ) ) ) )  =  ( ( ( ( oc `  K ) `
 X ) (
join `  K )
( ( oc `  K ) `  Y
) ) ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) ) )
4642, 45eqtr2d 2316 . . . . . . 7  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  =  (
( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )  ->  ( ( ( ( oc `  K
) `  X )
( join `  K )
( ( oc `  K ) `  Y
) ) ( meet `  K ) ( ( ( oc `  K
) `  X )
( join `  K ) Y ) )  =  ( ( oc `  K ) `  X
) )
4746oveq1d 5873 . . . . . 6  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  =  (
( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )  ->  ( ( ( ( ( oc `  K ) `  X
) ( join `  K
) ( ( oc
`  K ) `  Y ) ) (
meet `  K )
( ( ( oc
`  K ) `  X ) ( join `  K ) Y ) ) ( meet `  K
) Y )  =  ( ( ( oc
`  K ) `  X ) ( meet `  K ) Y ) )
4834, 47eqtrd 2315 . . . . 5  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  =  (
( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )  ->  ( ( ( oc `  K ) `
 ( X (
meet `  K ) Y ) ) (
meet `  K ) Y )  =  ( ( ( oc `  K ) `  X
) ( meet `  K
) Y ) )
4948oveq2d 5874 . . . 4  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  =  (
( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )  ->  ( ( X ( meet `  K
) Y ) (
join `  K )
( ( ( oc
`  K ) `  ( X ( meet `  K
) Y ) ) ( meet `  K
) Y ) )  =  ( ( X ( meet `  K
) Y ) (
join `  K )
( ( ( oc
`  K ) `  X ) ( meet `  K ) Y ) ) )
50 simp1 955 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  OML )
514, 16latmcl 14157 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  e.  B )
521, 51syl3an1 1215 . . . . . . 7  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  e.  B )
5350, 52, 93jca 1132 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( K  e.  OML  /\  ( X ( meet `  K ) Y )  e.  B  /\  Y  e.  B ) )
544, 10, 16latmle2 14183 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y ) ( le `  K
) Y )
551, 54syl3an1 1215 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y ) ( le `  K
) Y )
564, 10, 11, 16, 5omllaw2N 29434 . . . . . 6  |-  ( ( K  e.  OML  /\  ( X ( meet `  K
) Y )  e.  B  /\  Y  e.  B )  ->  (
( X ( meet `  K ) Y ) ( le `  K
) Y  ->  (
( X ( meet `  K ) Y ) ( join `  K
) ( ( ( oc `  K ) `
 ( X (
meet `  K ) Y ) ) (
meet `  K ) Y ) )  =  Y ) )
5753, 55, 56sylc 56 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K ) Y ) ( join `  K ) ( ( ( oc `  K
) `  ( X
( meet `  K ) Y ) ) (
meet `  K ) Y ) )  =  Y )
5857adantr 451 . . . 4  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  =  (
( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )  ->  ( ( X ( meet `  K
) Y ) (
join `  K )
( ( ( oc
`  K ) `  ( X ( meet `  K
) Y ) ) ( meet `  K
) Y ) )  =  Y )
594, 16latmcom 14181 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  =  ( Y (
meet `  K ) X ) )
601, 59syl3an1 1215 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( meet `  K ) Y )  =  ( Y (
meet `  K ) X ) )
614, 16latmcom 14181 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  X ) ( meet `  K ) Y )  =  ( Y (
meet `  K )
( ( oc `  K ) `  X
) ) )
622, 8, 9, 61syl3anc 1182 . . . . . 6  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( ( oc
`  K ) `  X ) ( meet `  K ) Y )  =  ( Y (
meet `  K )
( ( oc `  K ) `  X
) ) )
6360, 62oveq12d 5876 . . . . 5  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X (
meet `  K ) Y ) ( join `  K ) ( ( ( oc `  K
) `  X )
( meet `  K ) Y ) )  =  ( ( Y (
meet `  K ) X ) ( join `  K ) ( Y ( meet `  K
) ( ( oc
`  K ) `  X ) ) ) )
6463adantr 451 . . . 4  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  =  (
( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )  ->  ( ( X ( meet `  K
) Y ) (
join `  K )
( ( ( oc
`  K ) `  X ) ( meet `  K ) Y ) )  =  ( ( Y ( meet `  K
) X ) (
join `  K )
( Y ( meet `  K ) ( ( oc `  K ) `
 X ) ) ) )
6549, 58, 643eqtr3d 2323 . . 3  |-  ( ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  /\  X  =  (
( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) ) )  ->  Y  =  ( ( Y ( meet `  K ) X ) ( join `  K
) ( Y (
meet `  K )
( ( oc `  K ) `  X
) ) ) )
6665ex 423 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  =  ( ( X ( meet `  K ) Y ) ( join `  K
) ( X (
meet `  K )
( ( oc `  K ) `  Y
) ) )  ->  Y  =  ( ( Y ( meet `  K
) X ) (
join `  K )
( Y ( meet `  K ) ( ( oc `  K ) `
 X ) ) ) ) )
67 cmtcom.c . . 3  |-  C  =  ( cm `  K
)
684, 11, 16, 5, 67cmtvalN 29401 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X ( meet `  K
) Y ) (
join `  K )
( X ( meet `  K ) ( ( oc `  K ) `
 Y ) ) ) ) )
694, 11, 16, 5, 67cmtvalN 29401 . . 3  |-  ( ( K  e.  OML  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y C X  <-> 
Y  =  ( ( Y ( meet `  K
) X ) (
join `  K )
( Y ( meet `  K ) ( ( oc `  K ) `
 X ) ) ) ) )
70693com23 1157 . 2  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y C X  <-> 
Y  =  ( ( Y ( meet `  K
) X ) (
join `  K )
( Y ( meet `  K ) ( ( oc `  K ) `
 X ) ) ) ) )
7166, 68, 703imtr4d 259 1  |-  ( ( K  e.  OML  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  ->  Y C X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   occoc 13216   joincjn 14078   meetcmee 14079   Latclat 14151   OPcops 29362   cmccmtN 29363   OLcol 29364   OMLcoml 29365
This theorem is referenced by:  cmtcomN  29439
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-lat 14152  df-oposet 29366  df-cmtN 29367  df-ol 29368  df-oml 29369
  Copyright terms: Public domain W3C validator