Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtfvalN Unicode version

Theorem cmtfvalN 29400
Description: Value of commutes relation. (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtfval.b  |-  B  =  ( Base `  K
)
cmtfval.j  |-  .\/  =  ( join `  K )
cmtfval.m  |-  ./\  =  ( meet `  K )
cmtfval.o  |-  ._|_  =  ( oc `  K )
cmtfval.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
cmtfvalN  |-  ( K  e.  A  ->  C  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
Distinct variable groups:    x, y, B    x, K, y
Allowed substitution hints:    A( x, y)    C( x, y)    .\/ ( x, y)    ./\ (
x, y)    ._|_ ( x, y)

Proof of Theorem cmtfvalN
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 elex 2796 . 2  |-  ( K  e.  A  ->  K  e.  _V )
2 cmtfval.c . . 3  |-  C  =  ( cm `  K
)
3 fveq2 5525 . . . . . . . 8  |-  ( p  =  K  ->  ( Base `  p )  =  ( Base `  K
) )
4 cmtfval.b . . . . . . . 8  |-  B  =  ( Base `  K
)
53, 4syl6eqr 2333 . . . . . . 7  |-  ( p  =  K  ->  ( Base `  p )  =  B )
65eleq2d 2350 . . . . . 6  |-  ( p  =  K  ->  (
x  e.  ( Base `  p )  <->  x  e.  B ) )
75eleq2d 2350 . . . . . 6  |-  ( p  =  K  ->  (
y  e.  ( Base `  p )  <->  y  e.  B ) )
8 fveq2 5525 . . . . . . . . 9  |-  ( p  =  K  ->  ( join `  p )  =  ( join `  K
) )
9 cmtfval.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
108, 9syl6eqr 2333 . . . . . . . 8  |-  ( p  =  K  ->  ( join `  p )  = 
.\/  )
11 fveq2 5525 . . . . . . . . . 10  |-  ( p  =  K  ->  ( meet `  p )  =  ( meet `  K
) )
12 cmtfval.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
1311, 12syl6eqr 2333 . . . . . . . . 9  |-  ( p  =  K  ->  ( meet `  p )  = 
./\  )
1413oveqd 5875 . . . . . . . 8  |-  ( p  =  K  ->  (
x ( meet `  p
) y )  =  ( x  ./\  y
) )
15 eqidd 2284 . . . . . . . . 9  |-  ( p  =  K  ->  x  =  x )
16 fveq2 5525 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( oc `  p )  =  ( oc `  K
) )
17 cmtfval.o . . . . . . . . . . 11  |-  ._|_  =  ( oc `  K )
1816, 17syl6eqr 2333 . . . . . . . . . 10  |-  ( p  =  K  ->  ( oc `  p )  = 
._|_  )
1918fveq1d 5527 . . . . . . . . 9  |-  ( p  =  K  ->  (
( oc `  p
) `  y )  =  (  ._|_  `  y
) )
2013, 15, 19oveq123d 5879 . . . . . . . 8  |-  ( p  =  K  ->  (
x ( meet `  p
) ( ( oc
`  p ) `  y ) )  =  ( x  ./\  (  ._|_  `  y ) ) )
2110, 14, 20oveq123d 5879 . . . . . . 7  |-  ( p  =  K  ->  (
( x ( meet `  p ) y ) ( join `  p
) ( x (
meet `  p )
( ( oc `  p ) `  y
) ) )  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) )
2221eqeq2d 2294 . . . . . 6  |-  ( p  =  K  ->  (
x  =  ( ( x ( meet `  p
) y ) (
join `  p )
( x ( meet `  p ) ( ( oc `  p ) `
 y ) ) )  <->  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) )
236, 7, 223anbi123d 1252 . . . . 5  |-  ( p  =  K  ->  (
( x  e.  (
Base `  p )  /\  y  e.  ( Base `  p )  /\  x  =  ( (
x ( meet `  p
) y ) (
join `  p )
( x ( meet `  p ) ( ( oc `  p ) `
 y ) ) ) )  <->  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) ) )
2423opabbidv 4082 . . . 4  |-  ( p  =  K  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  p )  /\  y  e.  ( Base `  p
)  /\  x  =  ( ( x (
meet `  p )
y ) ( join `  p ) ( x ( meet `  p
) ( ( oc
`  p ) `  y ) ) ) ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) } )
25 df-cmtN 29367 . . . 4  |-  cm  =  ( p  e.  _V  |->  { <. x ,  y
>.  |  ( x  e.  ( Base `  p
)  /\  y  e.  ( Base `  p )  /\  x  =  (
( x ( meet `  p ) y ) ( join `  p
) ( x (
meet `  p )
( ( oc `  p ) `  y
) ) ) ) } )
26 df-3an 936 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B  /\  x  =  ( (
x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) )  <->  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) )
2726opabbii 4083 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( (
x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) }  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) }
28 fvex 5539 . . . . . . . 8  |-  ( Base `  K )  e.  _V
294, 28eqeltri 2353 . . . . . . 7  |-  B  e. 
_V
3029, 29xpex 4801 . . . . . 6  |-  ( B  X.  B )  e. 
_V
31 opabssxp 4762 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) }  C_  ( B  X.  B )
3230, 31ssexi 4159 . . . . 5  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) }  e.  _V
3327, 32eqeltri 2353 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( (
x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) }  e.  _V
3424, 25, 33fvmpt 5602 . . 3  |-  ( K  e.  _V  ->  ( cm `  K )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
352, 34syl5eq 2327 . 2  |-  ( K  e.  _V  ->  C  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
361, 35syl 15 1  |-  ( K  e.  A  ->  C  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788   {copab 4076    X. cxp 4687   ` cfv 5255  (class class class)co 5858   Basecbs 13148   occoc 13216   joincjn 14078   meetcmee 14079   cmccmtN 29363
This theorem is referenced by:  cmtvalN  29401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-cmtN 29367
  Copyright terms: Public domain W3C validator