MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmvth Structured version   Unicode version

Theorem cmvth 19867
Description: Cauchy's Mean Value Theorem. If  F ,  G are real continuous functions on  [ A ,  B ] differentiable on  ( A ,  B ), then there is some  x  e.  ( A ,  B ) such that  F'  ( x )  /  G'  ( x )  =  ( F ( A )  -  F
( B ) )  /  ( G ( A )  -  G
( B ) ). (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
cmvth.a  |-  ( ph  ->  A  e.  RR )
cmvth.b  |-  ( ph  ->  B  e.  RR )
cmvth.lt  |-  ( ph  ->  A  <  B )
cmvth.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
cmvth.g  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> RR ) )
cmvth.df  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
cmvth.dg  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
Assertion
Ref Expression
cmvth  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 x ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) )
Distinct variable groups:    x, A    x, B    x, F    x, G    ph, x

Proof of Theorem cmvth
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cmvth.a . . 3  |-  ( ph  ->  A  e.  RR )
2 cmvth.b . . 3  |-  ( ph  ->  B  e.  RR )
3 cmvth.lt . . 3  |-  ( ph  ->  A  <  B )
4 eqid 2435 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
54subcn 18888 . . . 4  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
64mulcn 18889 . . . . 5  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
7 cmvth.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
8 cncff 18915 . . . . . . . . 9  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
97, 8syl 16 . . . . . . . 8  |-  ( ph  ->  F : ( A [,] B ) --> RR )
101rexrd 9126 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR* )
112rexrd 9126 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR* )
121, 2, 3ltled 9213 . . . . . . . . 9  |-  ( ph  ->  A  <_  B )
13 ubicc2 11006 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
1410, 11, 12, 13syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  B  e.  ( A [,] B ) )
159, 14ffvelrnd 5863 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  RR )
16 lbicc2 11005 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
1710, 11, 12, 16syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  A  e.  ( A [,] B ) )
189, 17ffvelrnd 5863 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  RR )
1915, 18resubcld 9457 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  -  ( F `  A )
)  e.  RR )
20 iccssre 10984 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
211, 2, 20syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  C_  RR )
22 ax-resscn 9039 . . . . . . 7  |-  RR  C_  CC
2321, 22syl6ss 3352 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  CC )
2422a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
25 cncfmptc 18933 . . . . . 6  |-  ( ( ( ( F `  B )  -  ( F `  A )
)  e.  RR  /\  ( A [,] B ) 
C_  CC  /\  RR  C_  CC )  ->  ( z  e.  ( A [,] B )  |->  ( ( F `  B )  -  ( F `  A ) ) )  e.  ( ( A [,] B ) -cn-> RR ) )
2619, 23, 24, 25syl3anc 1184 . . . . 5  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( ( F `  B )  -  ( F `  A )
) )  e.  ( ( A [,] B
) -cn-> RR ) )
27 cmvth.g . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> RR ) )
28 cncff 18915 . . . . . . . 8  |-  ( G  e.  ( ( A [,] B ) -cn-> RR )  ->  G :
( A [,] B
) --> RR )
2927, 28syl 16 . . . . . . 7  |-  ( ph  ->  G : ( A [,] B ) --> RR )
3029feqmptd 5771 . . . . . 6  |-  ( ph  ->  G  =  ( z  e.  ( A [,] B )  |->  ( G `
 z ) ) )
3130, 27eqeltrrd 2510 . . . . 5  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( G `  z
) )  e.  ( ( A [,] B
) -cn-> RR ) )
32 remulcl 9067 . . . . 5  |-  ( ( ( ( F `  B )  -  ( F `  A )
)  e.  RR  /\  ( G `  z )  e.  RR )  -> 
( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  e.  RR )
334, 6, 26, 31, 22, 32cncfmpt2ss 18937 . . . 4  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) ) )  e.  ( ( A [,] B )
-cn-> RR ) )
3429, 14ffvelrnd 5863 . . . . . . 7  |-  ( ph  ->  ( G `  B
)  e.  RR )
3529, 17ffvelrnd 5863 . . . . . . 7  |-  ( ph  ->  ( G `  A
)  e.  RR )
3634, 35resubcld 9457 . . . . . 6  |-  ( ph  ->  ( ( G `  B )  -  ( G `  A )
)  e.  RR )
37 cncfmptc 18933 . . . . . 6  |-  ( ( ( ( G `  B )  -  ( G `  A )
)  e.  RR  /\  ( A [,] B ) 
C_  CC  /\  RR  C_  CC )  ->  ( z  e.  ( A [,] B )  |->  ( ( G `  B )  -  ( G `  A ) ) )  e.  ( ( A [,] B ) -cn-> RR ) )
3836, 23, 24, 37syl3anc 1184 . . . . 5  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( ( G `  B )  -  ( G `  A )
) )  e.  ( ( A [,] B
) -cn-> RR ) )
399feqmptd 5771 . . . . . 6  |-  ( ph  ->  F  =  ( z  e.  ( A [,] B )  |->  ( F `
 z ) ) )
4039, 7eqeltrrd 2510 . . . . 5  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( F `  z
) )  e.  ( ( A [,] B
) -cn-> RR ) )
41 remulcl 9067 . . . . 5  |-  ( ( ( ( G `  B )  -  ( G `  A )
)  e.  RR  /\  ( F `  z )  e.  RR )  -> 
( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) )  e.  RR )
424, 6, 38, 40, 22, 41cncfmpt2ss 18937 . . . 4  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) )  e.  ( ( A [,] B )
-cn-> RR ) )
43 resubcl 9357 . . . 4  |-  ( ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  e.  RR  /\  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) )  e.  RR )  -> 
( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) )  e.  RR )
444, 5, 33, 42, 22, 43cncfmpt2ss 18937 . . 3  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) )  e.  ( ( A [,] B
) -cn-> RR ) )
4519recnd 9106 . . . . . . . . . 10  |-  ( ph  ->  ( ( F `  B )  -  ( F `  A )
)  e.  CC )
4645adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( ( F `  B )  -  ( F `  A ) )  e.  CC )
4729ffvelrnda 5862 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( G `  z )  e.  RR )
4847recnd 9106 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( G `  z )  e.  CC )
4946, 48mulcld 9100 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  e.  CC )
5036adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( ( G `  B )  -  ( G `  A ) )  e.  RR )
519ffvelrnda 5862 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( F `  z )  e.  RR )
5250, 51remulcld 9108 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( (
( G `  B
)  -  ( G `
 A ) )  x.  ( F `  z ) )  e.  RR )
5352recnd 9106 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( (
( G `  B
)  -  ( G `
 A ) )  x.  ( F `  z ) )  e.  CC )
5449, 53subcld 9403 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( (
( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) )  e.  CC )
554tgioo2 18826 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
56 iccntr 18844 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
571, 2, 56syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5824, 21, 54, 55, 4, 57dvmptntr 19849 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A [,] B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) )  =  ( RR 
_D  ( z  e.  ( A (,) B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) ) )
59 reex 9073 . . . . . . . . 9  |-  RR  e.  _V
6059prid1 3904 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
6160a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  { RR ,  CC } )
62 ioossicc 10988 . . . . . . . . 9  |-  ( A (,) B )  C_  ( A [,] B )
6362sseli 3336 . . . . . . . 8  |-  ( z  e.  ( A (,) B )  ->  z  e.  ( A [,] B
) )
6463, 49sylan2 461 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  e.  CC )
65 ovex 6098 . . . . . . . 8  |-  ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  z ) )  e. 
_V
6665a1i 11 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  z ) )  e. 
_V )
6763, 48sylan2 461 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( G `  z )  e.  CC )
68 fvex 5734 . . . . . . . . 9  |-  ( ( RR  _D  G ) `
 z )  e. 
_V
6968a1i 11 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  z )  e.  _V )
7030oveq2d 6089 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  G
)  =  ( RR 
_D  ( z  e.  ( A [,] B
)  |->  ( G `  z ) ) ) )
71 dvf 19786 . . . . . . . . . . 11  |-  ( RR 
_D  G ) : dom  ( RR  _D  G ) --> CC
72 cmvth.dg . . . . . . . . . . . 12  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
7372feq2d 5573 . . . . . . . . . . 11  |-  ( ph  ->  ( ( RR  _D  G ) : dom  ( RR  _D  G
) --> CC  <->  ( RR  _D  G ) : ( A (,) B ) --> CC ) )
7471, 73mpbii 203 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  G
) : ( A (,) B ) --> CC )
7574feqmptd 5771 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  G
)  =  ( z  e.  ( A (,) B )  |->  ( ( RR  _D  G ) `
 z ) ) )
7624, 21, 48, 55, 4, 57dvmptntr 19849 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A [,] B )  |->  ( G `  z ) ) )  =  ( RR  _D  ( z  e.  ( A (,) B )  |->  ( G `
 z ) ) ) )
7770, 75, 763eqtr3rd 2476 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A (,) B )  |->  ( G `  z ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( RR  _D  G
) `  z )
) )
7861, 67, 69, 77, 45dvmptcmul 19842 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A (,) B )  |->  ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) ) ) )
7963, 53sylan2 461 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( G `  B
)  -  ( G `
 A ) )  x.  ( F `  z ) )  e.  CC )
80 ovex 6098 . . . . . . . 8  |-  ( ( ( G `  B
)  -  ( G `
 A ) )  x.  ( ( RR 
_D  F ) `  z ) )  e. 
_V
8180a1i 11 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( G `  B
)  -  ( G `
 A ) )  x.  ( ( RR 
_D  F ) `  z ) )  e. 
_V )
8251recnd 9106 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( F `  z )  e.  CC )
8363, 82sylan2 461 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( F `  z )  e.  CC )
84 fvex 5734 . . . . . . . . 9  |-  ( ( RR  _D  F ) `
 z )  e. 
_V
8584a1i 11 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  z )  e.  _V )
8639oveq2d 6089 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( z  e.  ( A [,] B
)  |->  ( F `  z ) ) ) )
87 dvf 19786 . . . . . . . . . . 11  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
88 cmvth.df . . . . . . . . . . . 12  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
8988feq2d 5573 . . . . . . . . . . 11  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
9087, 89mpbii 203 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
9190feqmptd 5771 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
)  =  ( z  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 z ) ) )
9224, 21, 82, 55, 4, 57dvmptntr 19849 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A [,] B )  |->  ( F `  z ) ) )  =  ( RR  _D  ( z  e.  ( A (,) B )  |->  ( F `
 z ) ) ) )
9386, 91, 923eqtr3rd 2476 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A (,) B )  |->  ( F `  z ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  z )
) )
9436recnd 9106 . . . . . . . 8  |-  ( ph  ->  ( ( G `  B )  -  ( G `  A )
)  e.  CC )
9561, 83, 85, 93, 94dvmptcmul 19842 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A (,) B )  |->  ( ( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 z ) ) ) )
9661, 64, 66, 78, 79, 81, 95dvmptsub 19845 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A (,) B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) ) ) )
9758, 96eqtrd 2467 . . . . 5  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A [,] B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) ) ) )
9897dmeqd 5064 . . . 4  |-  ( ph  ->  dom  ( RR  _D  ( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) )  =  dom  ( z  e.  ( A (,) B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `
 z ) ) ) ) )
99 ovex 6098 . . . . 5  |-  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) )  e. 
_V
100 eqid 2435 . . . . 5  |-  ( z  e.  ( A (,) B )  |->  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) ) )  =  ( z  e.  ( A (,) B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `
 z ) ) ) )
10199, 100dmmpti 5566 . . . 4  |-  dom  (
z  e.  ( A (,) B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) ) )  =  ( A (,) B )
10298, 101syl6eq 2483 . . 3  |-  ( ph  ->  dom  ( RR  _D  ( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) )  =  ( A (,) B
) )
10315recnd 9106 . . . . . . . 8  |-  ( ph  ->  ( F `  B
)  e.  CC )
10435recnd 9106 . . . . . . . 8  |-  ( ph  ->  ( G `  A
)  e.  CC )
105103, 104mulcld 9100 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  x.  ( G `  A )
)  e.  CC )
10618recnd 9106 . . . . . . . 8  |-  ( ph  ->  ( F `  A
)  e.  CC )
10734recnd 9106 . . . . . . . 8  |-  ( ph  ->  ( G `  B
)  e.  CC )
108106, 107mulcld 9100 . . . . . . 7  |-  ( ph  ->  ( ( F `  A )  x.  ( G `  B )
)  e.  CC )
109106, 104mulcld 9100 . . . . . . 7  |-  ( ph  ->  ( ( F `  A )  x.  ( G `  A )
)  e.  CC )
110105, 108, 109nnncan2d 9438 . . . . . 6  |-  ( ph  ->  ( ( ( ( F `  B )  x.  ( G `  A ) )  -  ( ( F `  A )  x.  ( G `  A )
) )  -  (
( ( F `  A )  x.  ( G `  B )
)  -  ( ( F `  A )  x.  ( G `  A ) ) ) )  =  ( ( ( F `  B
)  x.  ( G `
 A ) )  -  ( ( F `
 A )  x.  ( G `  B
) ) ) )
111103, 107mulcld 9100 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  x.  ( G `  B )
)  e.  CC )
112111, 108, 105nnncan1d 9437 . . . . . 6  |-  ( ph  ->  ( ( ( ( F `  B )  x.  ( G `  B ) )  -  ( ( F `  A )  x.  ( G `  B )
) )  -  (
( ( F `  B )  x.  ( G `  B )
)  -  ( ( F `  B )  x.  ( G `  A ) ) ) )  =  ( ( ( F `  B
)  x.  ( G `
 A ) )  -  ( ( F `
 A )  x.  ( G `  B
) ) ) )
113110, 112eqtr4d 2470 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  B )  x.  ( G `  A ) )  -  ( ( F `  A )  x.  ( G `  A )
) )  -  (
( ( F `  A )  x.  ( G `  B )
)  -  ( ( F `  A )  x.  ( G `  A ) ) ) )  =  ( ( ( ( F `  B )  x.  ( G `  B )
)  -  ( ( F `  A )  x.  ( G `  B ) ) )  -  ( ( ( F `  B )  x.  ( G `  B ) )  -  ( ( F `  B )  x.  ( G `  A )
) ) ) )
114103, 106, 104subdird 9482 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 A ) )  =  ( ( ( F `  B )  x.  ( G `  A ) )  -  ( ( F `  A )  x.  ( G `  A )
) ) )
11594, 106mulcomd 9101 . . . . . . 7  |-  ( ph  ->  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 A ) )  =  ( ( F `
 A )  x.  ( ( G `  B )  -  ( G `  A )
) ) )
116106, 107, 104subdid 9481 . . . . . . 7  |-  ( ph  ->  ( ( F `  A )  x.  (
( G `  B
)  -  ( G `
 A ) ) )  =  ( ( ( F `  A
)  x.  ( G `
 B ) )  -  ( ( F `
 A )  x.  ( G `  A
) ) ) )
117115, 116eqtrd 2467 . . . . . 6  |-  ( ph  ->  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 A ) )  =  ( ( ( F `  A )  x.  ( G `  B ) )  -  ( ( F `  A )  x.  ( G `  A )
) ) )
118114, 117oveq12d 6091 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  A
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 A ) ) )  =  ( ( ( ( F `  B )  x.  ( G `  A )
)  -  ( ( F `  A )  x.  ( G `  A ) ) )  -  ( ( ( F `  A )  x.  ( G `  B ) )  -  ( ( F `  A )  x.  ( G `  A )
) ) ) )
119103, 106, 107subdird 9482 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 B ) )  =  ( ( ( F `  B )  x.  ( G `  B ) )  -  ( ( F `  A )  x.  ( G `  B )
) ) )
12094, 103mulcomd 9101 . . . . . . 7  |-  ( ph  ->  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 B ) )  =  ( ( F `
 B )  x.  ( ( G `  B )  -  ( G `  A )
) ) )
121103, 107, 104subdid 9481 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  x.  (
( G `  B
)  -  ( G `
 A ) ) )  =  ( ( ( F `  B
)  x.  ( G `
 B ) )  -  ( ( F `
 B )  x.  ( G `  A
) ) ) )
122120, 121eqtrd 2467 . . . . . 6  |-  ( ph  ->  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 B ) )  =  ( ( ( F `  B )  x.  ( G `  B ) )  -  ( ( F `  B )  x.  ( G `  A )
) ) )
123119, 122oveq12d 6091 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  B
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 B ) ) )  =  ( ( ( ( F `  B )  x.  ( G `  B )
)  -  ( ( F `  A )  x.  ( G `  B ) ) )  -  ( ( ( F `  B )  x.  ( G `  B ) )  -  ( ( F `  B )  x.  ( G `  A )
) ) ) )
124113, 118, 1233eqtr4d 2477 . . . 4  |-  ( ph  ->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  A
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 A ) ) )  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 B ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  B
) ) ) )
125 fveq2 5720 . . . . . . . 8  |-  ( z  =  A  ->  ( G `  z )  =  ( G `  A ) )
126125oveq2d 6089 . . . . . . 7  |-  ( z  =  A  ->  (
( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) )  =  ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  A
) ) )
127 fveq2 5720 . . . . . . . 8  |-  ( z  =  A  ->  ( F `  z )  =  ( F `  A ) )
128127oveq2d 6089 . . . . . . 7  |-  ( z  =  A  ->  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  A
) ) )
129126, 128oveq12d 6091 . . . . . 6  |-  ( z  =  A  ->  (
( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) )  =  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  A
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 A ) ) ) )
130 eqid 2435 . . . . . 6  |-  ( z  e.  ( A [,] B )  |->  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) )  =  ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) )
131 ovex 6098 . . . . . 6  |-  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) )  e. 
_V
132129, 130, 131fvmpt3i 5801 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  (
( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) `  A
)  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 A ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  A
) ) ) )
13317, 132syl 16 . . . 4  |-  ( ph  ->  ( ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) `  A
)  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 A ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  A
) ) ) )
134 fveq2 5720 . . . . . . . 8  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
135134oveq2d 6089 . . . . . . 7  |-  ( z  =  B  ->  (
( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) )  =  ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  B
) ) )
136 fveq2 5720 . . . . . . . 8  |-  ( z  =  B  ->  ( F `  z )  =  ( F `  B ) )
137136oveq2d 6089 . . . . . . 7  |-  ( z  =  B  ->  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  B
) ) )
138135, 137oveq12d 6091 . . . . . 6  |-  ( z  =  B  ->  (
( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) )  =  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  B
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 B ) ) ) )
139138, 130, 131fvmpt3i 5801 . . . . 5  |-  ( B  e.  ( A [,] B )  ->  (
( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) `  B
)  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 B ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  B
) ) ) )
14014, 139syl 16 . . . 4  |-  ( ph  ->  ( ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) `  B
)  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 B ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  B
) ) ) )
141124, 133, 1403eqtr4d 2477 . . 3  |-  ( ph  ->  ( ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) `  A
)  =  ( ( z  e.  ( A [,] B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) `
 B ) )
1421, 2, 3, 44, 102, 141rolle 19866 . 2  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  ( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) ) `  x )  =  0 )
14397fveq1d 5722 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  ( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) ) `  x )  =  ( ( z  e.  ( A (,) B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 z ) ) ) ) `  x
) )
144 fveq2 5720 . . . . . . . . 9  |-  ( z  =  x  ->  (
( RR  _D  G
) `  z )  =  ( ( RR 
_D  G ) `  x ) )
145144oveq2d 6089 . . . . . . . 8  |-  ( z  =  x  ->  (
( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) )  =  ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `  x
) ) )
146 fveq2 5720 . . . . . . . . 9  |-  ( z  =  x  ->  (
( RR  _D  F
) `  z )  =  ( ( RR 
_D  F ) `  x ) )
147146oveq2d 6089 . . . . . . . 8  |-  ( z  =  x  ->  (
( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 z ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) )
148145, 147oveq12d 6091 . . . . . . 7  |-  ( z  =  x  ->  (
( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) )  =  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `  x
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 x ) ) ) )
149148, 100, 99fvmpt3i 5801 . . . . . 6  |-  ( x  e.  ( A (,) B )  ->  (
( z  e.  ( A (,) B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 z ) ) ) ) `  x
)  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 x ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) ) )
150143, 149sylan9eq 2487 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) ) `  x )  =  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 x ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) ) )
151150eqeq1d 2443 . . . 4  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
z  e.  ( A [,] B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) ) `  x )  =  0  <->  ( (
( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 x ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) )  =  0 ) )
15245adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( F `  B )  -  ( F `  A ) )  e.  CC )
15374ffvelrnda 5862 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  x )  e.  CC )
154152, 153mulcld 9100 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  x ) )  e.  CC )
15594adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( G `  B )  -  ( G `  A ) )  e.  CC )
15690ffvelrnda 5862 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
157155, 156mulcld 9100 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( G `  B
)  -  ( G `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  e.  CC )
158154, 157subeq0ad 9413 . . . 4  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 x ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) )  =  0  <->  ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `  x
) )  =  ( ( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 x ) ) ) )
159151, 158bitrd 245 . . 3  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
z  e.  ( A [,] B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) ) `  x )  =  0  <->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  x ) )  =  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `
 x ) ) ) )
160159rexbidva 2714 . 2  |-  ( ph  ->  ( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) ) `  x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 x ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) ) )
161142, 160mpbid 202 1  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 x ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698   _Vcvv 2948    C_ wss 3312   {cpr 3807   class class class wbr 4204    e. cmpt 4258   dom cdm 4870   ran crn 4871   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982    x. cmul 8987   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283   (,)cioo 10908   [,]cicc 10911   TopOpenctopn 13641   topGenctg 13657  ℂfldccnfld 16695   intcnt 17073   -cn->ccncf 18898    _D cdv 19742
This theorem is referenced by:  mvth  19868  lhop1lem  19889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-cmp 17442  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-limc 19745  df-dv 19746
  Copyright terms: Public domain W3C validator