MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfco Unicode version

Theorem cncfco 18411
Description: The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cncfco.4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
cncfco.5  |-  ( ph  ->  G  e.  ( B
-cn-> C ) )
Assertion
Ref Expression
cncfco  |-  ( ph  ->  ( G  o.  F
)  e.  ( A
-cn-> C ) )

Proof of Theorem cncfco
Dummy variables  w  u  x  y  z 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfco.5 . . . 4  |-  ( ph  ->  G  e.  ( B
-cn-> C ) )
2 cncff 18397 . . . 4  |-  ( G  e.  ( B -cn-> C )  ->  G : B
--> C )
31, 2syl 15 . . 3  |-  ( ph  ->  G : B --> C )
4 cncfco.4 . . . 4  |-  ( ph  ->  F  e.  ( A
-cn-> B ) )
5 cncff 18397 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  F : A
--> B )
64, 5syl 15 . . 3  |-  ( ph  ->  F : A --> B )
7 fco 5398 . . 3  |-  ( ( G : B --> C  /\  F : A --> B )  ->  ( G  o.  F ) : A --> C )
83, 6, 7syl2anc 642 . 2  |-  ( ph  ->  ( G  o.  F
) : A --> C )
91adantr 451 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  G  e.  ( B -cn-> C ) )
106adantr 451 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  F : A --> B )
11 simprl 732 . . . . . 6  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  x  e.  A )
12 ffvelrn 5663 . . . . . 6  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
1310, 11, 12syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
( F `  x
)  e.  B )
14 simprr 733 . . . . 5  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
y  e.  RR+ )
15 cncfi 18398 . . . . 5  |-  ( ( G  e.  ( B
-cn-> C )  /\  ( F `  x )  e.  B  /\  y  e.  RR+ )  ->  E. u  e.  RR+  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
169, 13, 14, 15syl3anc 1182 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. u  e.  RR+  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
174ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  F  e.  ( A -cn-> B ) )
18 simplrl 736 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  x  e.  A
)
19 simpr 447 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  u  e.  RR+ )
20 cncfi 18398 . . . . . . 7  |-  ( ( F  e.  ( A
-cn-> B )  /\  x  e.  A  /\  u  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u ) )
2117, 18, 19, 20syl3anc 1182 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u ) )
226ad3antrrr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  F : A --> B )
23 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  w  e.  A )
24 ffvelrn 5663 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> B  /\  w  e.  A )  ->  ( F `  w
)  e.  B )
2522, 23, 24syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( F `  w
)  e.  B )
26 oveq1 5865 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  ( F `  w )  ->  (
v  -  ( F `
 x ) )  =  ( ( F `
 w )  -  ( F `  x ) ) )
2726fveq2d 5529 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( F `  w )  ->  ( abs `  ( v  -  ( F `  x ) ) )  =  ( abs `  ( ( F `  w )  -  ( F `  x ) ) ) )
2827breq1d 4033 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( F `  w )  ->  (
( abs `  (
v  -  ( F `
 x ) ) )  <  u  <->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u
) )
29 fveq2 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( v  =  ( F `  w )  ->  ( G `  v )  =  ( G `  ( F `  w ) ) )
3029oveq1d 5873 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  ( F `  w )  ->  (
( G `  v
)  -  ( G `
 ( F `  x ) ) )  =  ( ( G `
 ( F `  w ) )  -  ( G `  ( F `
 x ) ) ) )
3130fveq2d 5529 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  ( F `  w )  ->  ( abs `  ( ( G `
 v )  -  ( G `  ( F `
 x ) ) ) )  =  ( abs `  ( ( G `  ( F `
 w ) )  -  ( G `  ( F `  x ) ) ) ) )
3231breq1d 4033 . . . . . . . . . . . . . . . . 17  |-  ( v  =  ( F `  w )  ->  (
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y  <->  ( abs `  ( ( G `  ( F `  w ) )  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
3328, 32imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( v  =  ( F `  w )  ->  (
( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  <-> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
3433rspcv 2880 . . . . . . . . . . . . . . 15  |-  ( ( F `  w )  e.  B  ->  ( A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
3525, 34syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
36 fvco3 5596 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  w  e.  A )  ->  ( ( G  o.  F ) `  w
)  =  ( G `
 ( F `  w ) ) )
3722, 23, 36syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( G  o.  F ) `  w
)  =  ( G `
 ( F `  w ) ) )
3818adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  ->  x  e.  A )
39 fvco3 5596 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
4022, 38, 39syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( G  o.  F ) `  x
)  =  ( G `
 ( F `  x ) ) )
4137, 40oveq12d 5876 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( G  o.  F ) `  w )  -  (
( G  o.  F
) `  x )
)  =  ( ( G `  ( F `
 w ) )  -  ( G `  ( F `  x ) ) ) )
4241fveq2d 5529 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  =  ( abs `  ( ( G `  ( F `  w ) )  -  ( G `
 ( F `  x ) ) ) ) )
4342breq1d 4033 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y  <->  ( abs `  ( ( G `  ( F `  w ) )  -  ( G `
 ( F `  x ) ) ) )  <  y ) )
4443imbi2d 307 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y )  <-> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  ( F `  w )
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) ) )
4535, 44sylibrd 225 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4645imp 418 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  ( z  e.  RR+  /\  w  e.  A ) )  /\  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  ->  ( ( abs `  ( ( F `
 w )  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
4746an32s 779 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
4847imim2d 48 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  ( z  e.  RR+  /\  w  e.  A ) )  -> 
( ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
4948anassrs 629 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  z  e.  RR+ )  /\  w  e.  A )  ->  (
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
5049ralimdva 2621 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  /\  z  e.  RR+ )  ->  ( A. w  e.  A  (
( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
5150reximdva 2655 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  A  /\  y  e.  RR+ )
)  /\  u  e.  RR+ )  /\  A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y ) )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  u
)  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
5251ex 423 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  ( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  u )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
5321, 52mpid 37 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  A  /\  y  e.  RR+ ) )  /\  u  e.  RR+ )  ->  ( A. v  e.  B  ( ( abs `  ( v  -  ( F `  x ) ) )  <  u  ->  ( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
5453rexlimdva 2667 . . . 4  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  -> 
( E. u  e.  RR+  A. v  e.  B  ( ( abs `  (
v  -  ( F `
 x ) ) )  <  u  -> 
( abs `  (
( G `  v
)  -  ( G `
 ( F `  x ) ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) )
5516, 54mpd 14 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( ( G  o.  F ) `  w )  -  (
( G  o.  F
) `  x )
) )  <  y
) )
5655ralrimivva 2635 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) )
57 cncfrss 18395 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
584, 57syl 15 . . 3  |-  ( ph  ->  A  C_  CC )
59 cncfrss2 18396 . . . 4  |-  ( G  e.  ( B -cn-> C )  ->  C  C_  CC )
601, 59syl 15 . . 3  |-  ( ph  ->  C  C_  CC )
61 elcncf2 18394 . . 3  |-  ( ( A  C_  CC  /\  C  C_  CC )  ->  (
( G  o.  F
)  e.  ( A
-cn-> C )  <->  ( ( G  o.  F ) : A --> C  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
6258, 60, 61syl2anc 642 . 2  |-  ( ph  ->  ( ( G  o.  F )  e.  ( A -cn-> C )  <->  ( ( G  o.  F ) : A --> C  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( ( G  o.  F ) `  w
)  -  ( ( G  o.  F ) `
 x ) ) )  <  y ) ) ) )
638, 56, 62mpbir2and 888 1  |-  ( ph  ->  ( G  o.  F
)  e.  ( A
-cn-> C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735    < clt 8867    - cmin 9037   RR+crp 10354   abscabs 11719   -cn->ccncf 18380
This theorem is referenced by:  cncfmpt1f  18417  negfcncf  18422  cniccbdd  18821  cncombf  19013  cnmbf  19014  dvlip  19340  dvlipcn  19341  itgsubstlem  19395  sincn  19820  coscn  19821  logcn  19994  ftalem3  20312  mulc1cncfg  27721  expcnfg  27726
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-2 9804  df-cj 11584  df-re 11585  df-im 11586  df-abs 11721  df-cncf 18382
  Copyright terms: Public domain W3C validator