MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnclima Structured version   Unicode version

Theorem cnclima 17332
Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnclima  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F " A )  e.  (
Clsd `  J )
)

Proof of Theorem cnclima
StepHypRef Expression
1 eqid 2436 . . . . . 6  |-  U. J  =  U. J
2 eqid 2436 . . . . . 6  |-  U. K  =  U. K
31, 2cnf 17310 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
43adantr 452 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  ->  F : U. J --> U. K
)
5 ffun 5593 . . . . . 6  |-  ( F : U. J --> U. K  ->  Fun  F )
6 funcnvcnv 5509 . . . . . 6  |-  ( Fun 
F  ->  Fun  `' `' F )
7 imadif 5528 . . . . . 6  |-  ( Fun  `' `' F  ->  ( `' F " ( U. K  \  A ) )  =  ( ( `' F " U. K
)  \  ( `' F " A ) ) )
85, 6, 73syl 19 . . . . 5  |-  ( F : U. J --> U. K  ->  ( `' F "
( U. K  \  A ) )  =  ( ( `' F " U. K )  \ 
( `' F " A ) ) )
9 fimacnv 5862 . . . . . 6  |-  ( F : U. J --> U. K  ->  ( `' F " U. K )  =  U. J )
109difeq1d 3464 . . . . 5  |-  ( F : U. J --> U. K  ->  ( ( `' F " U. K )  \ 
( `' F " A ) )  =  ( U. J  \ 
( `' F " A ) ) )
118, 10eqtr2d 2469 . . . 4  |-  ( F : U. J --> U. K  ->  ( U. J  \ 
( `' F " A ) )  =  ( `' F "
( U. K  \  A ) ) )
124, 11syl 16 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( U. J  \ 
( `' F " A ) )  =  ( `' F "
( U. K  \  A ) ) )
132cldopn 17095 . . . 4  |-  ( A  e.  ( Clsd `  K
)  ->  ( U. K  \  A )  e.  K )
14 cnima 17329 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  ( U. K  \  A
)  e.  K )  ->  ( `' F " ( U. K  \  A ) )  e.  J )
1513, 14sylan2 461 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F "
( U. K  \  A ) )  e.  J )
1612, 15eqeltrd 2510 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( U. J  \ 
( `' F " A ) )  e.  J )
17 cntop1 17304 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
1817adantr 452 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  ->  J  e.  Top )
19 cnvimass 5224 . . . 4  |-  ( `' F " A ) 
C_  dom  F
20 fdm 5595 . . . . 5  |-  ( F : U. J --> U. K  ->  dom  F  =  U. J )
214, 20syl 16 . . . 4  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  ->  dom  F  =  U. J
)
2219, 21syl5sseq 3396 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F " A )  C_  U. J
)
231iscld2 17092 . . 3  |-  ( ( J  e.  Top  /\  ( `' F " A ) 
C_  U. J )  -> 
( ( `' F " A )  e.  (
Clsd `  J )  <->  ( U. J  \  ( `' F " A ) )  e.  J ) )
2418, 22, 23syl2anc 643 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( ( `' F " A )  e.  (
Clsd `  J )  <->  ( U. J  \  ( `' F " A ) )  e.  J ) )
2516, 24mpbird 224 1  |-  ( ( F  e.  ( J  Cn  K )  /\  A  e.  ( Clsd `  K ) )  -> 
( `' F " A )  e.  (
Clsd `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    \ cdif 3317    C_ wss 3320   U.cuni 4015   `'ccnv 4877   dom cdm 4878   "cima 4881   Fun wfun 5448   -->wf 5450   ` cfv 5454  (class class class)co 6081   Topctop 16958   Clsdccld 17080    Cn ccn 17288
This theorem is referenced by:  iscncl  17333  cncls2i  17334  paste  17358  cnt1  17414  dnsconst  17442  cnconn  17485  hauseqlcld  17678  txcon  17721  imasncld  17723  r0cld  17770  kqreglem2  17774  kqnrmlem1  17775  kqnrmlem2  17776  hmeocld  17799  nrmhmph  17826  tgphaus  18146  csscld  19203  clsocv  19204  hmeoclda  26336  hmeocldb  26337  rfcnpre3  27680  rfcnpre4  27681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-map 7020  df-top 16963  df-topon 16966  df-cld 17083  df-cn 17291
  Copyright terms: Public domain W3C validator