MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncmet Structured version   Unicode version

Theorem cncmet 19267
Description: The set of complex numbers is a complete metric space under the absolute value metric. (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cncmet.1  |-  D  =  ( abs  o.  -  )
Assertion
Ref Expression
cncmet  |-  D  e.  ( CMet `  CC )

Proof of Theorem cncmet
Dummy variables  x  r  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . . 5  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
21cnfldtopn 18808 . . . 4  |-  ( TopOpen ` fld )  =  ( MetOpen `  ( abs  o.  -  ) )
3 cncmet.1 . . . . 5  |-  D  =  ( abs  o.  -  )
43fveq2i 5723 . . . 4  |-  ( MetOpen `  D )  =  (
MetOpen `  ( abs  o.  -  ) )
52, 4eqtr4i 2458 . . 3  |-  ( TopOpen ` fld )  =  ( MetOpen `  D
)
6 cnmet 18798 . . . . 5  |-  ( abs 
o.  -  )  e.  ( Met `  CC )
73, 6eqeltri 2505 . . . 4  |-  D  e.  ( Met `  CC )
87a1i 11 . . 3  |-  (  T. 
->  D  e.  ( Met `  CC ) )
9 1rp 10608 . . . 4  |-  1  e.  RR+
109a1i 11 . . 3  |-  (  T. 
->  1  e.  RR+ )
111cnfldtop 18810 . . . . . 6  |-  ( TopOpen ` fld )  e.  Top
12 metxmet 18356 . . . . . . . 8  |-  ( D  e.  ( Met `  CC )  ->  D  e.  ( * Met `  CC ) )
137, 12ax-mp 8 . . . . . . 7  |-  D  e.  ( * Met `  CC )
14 rpxr 10611 . . . . . . . 8  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
159, 14ax-mp 8 . . . . . . 7  |-  1  e.  RR*
16 blssm 18440 . . . . . . 7  |-  ( ( D  e.  ( * Met `  CC )  /\  x  e.  CC  /\  1  e.  RR* )  ->  ( x ( ball `  D ) 1 ) 
C_  CC )
1713, 15, 16mp3an13 1270 . . . . . 6  |-  ( x  e.  CC  ->  (
x ( ball `  D
) 1 )  C_  CC )
181cnfldtopon 18809 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
1918toponunii 16989 . . . . . . 7  |-  CC  =  U. ( TopOpen ` fld )
2019clscld 17103 . . . . . 6  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( x ( ball `  D ) 1 ) 
C_  CC )  -> 
( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) )  e.  ( Clsd `  ( TopOpen
` fld
) ) )
2111, 17, 20sylancr 645 . . . . 5  |-  ( x  e.  CC  ->  (
( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) )  e.  ( Clsd `  ( TopOpen
` fld
) ) )
22 abscl 12075 . . . . . . 7  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
23 peano2re 9231 . . . . . . 7  |-  ( ( abs `  x )  e.  RR  ->  (
( abs `  x
)  +  1 )  e.  RR )
2422, 23syl 16 . . . . . 6  |-  ( x  e.  CC  ->  (
( abs `  x
)  +  1 )  e.  RR )
25 df-rab 2706 . . . . . . . . . . 11  |-  { y  e.  CC  |  ( x D y )  <_  1 }  =  { y  |  ( y  e.  CC  /\  ( x D y )  <_  1 ) }
2625eqcomi 2439 . . . . . . . . . 10  |-  { y  |  ( y  e.  CC  /\  ( x D y )  <_ 
1 ) }  =  { y  e.  CC  |  ( x D y )  <_  1 }
275, 26blcls 18528 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  CC )  /\  x  e.  CC  /\  1  e.  RR* )  ->  ( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) 
C_  { y  |  ( y  e.  CC  /\  ( x D y )  <_  1 ) } )
2813, 15, 27mp3an13 1270 . . . . . . . 8  |-  ( x  e.  CC  ->  (
( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) 
C_  { y  |  ( y  e.  CC  /\  ( x D y )  <_  1 ) } )
29 abscl 12075 . . . . . . . . . . . . . 14  |-  ( y  e.  CC  ->  ( abs `  y )  e.  RR )
3029ad2antrl 709 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( abs `  y )  e.  RR )
3122adantr 452 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( abs `  x )  e.  RR )
3230, 31resubcld 9457 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( ( abs `  y )  -  ( abs `  x ) )  e.  RR )
33 simpl 444 . . . . . . . . . . . . . 14  |-  ( ( y  e.  CC  /\  ( x D y )  <_  1 )  ->  y  e.  CC )
34 id 20 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  x  e.  CC )
35 subcl 9297 . . . . . . . . . . . . . 14  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( y  -  x
)  e.  CC )
3633, 34, 35syl2anr 465 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( y  -  x )  e.  CC )
3736abscld 12230 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( abs `  ( y  -  x
) )  e.  RR )
38 1re 9082 . . . . . . . . . . . . 13  |-  1  e.  RR
3938a1i 11 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  1  e.  RR )
40 simprl 733 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  y  e.  CC )
41 simpl 444 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  x  e.  CC )
4240, 41abs2difd 12251 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( ( abs `  y )  -  ( abs `  x ) )  <_  ( abs `  ( y  -  x
) ) )
433cnmetdval 18797 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x D y )  =  ( abs `  ( x  -  y
) ) )
44 abssub 12122 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  -  y ) )  =  ( abs `  ( y  -  x
) ) )
4543, 44eqtrd 2467 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x D y )  =  ( abs `  ( y  -  x
) ) )
4645adantrr 698 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( x D y )  =  ( abs `  (
y  -  x ) ) )
47 simprr 734 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( x D y )  <_ 
1 )
4846, 47eqbrtrrd 4226 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( abs `  ( y  -  x
) )  <_  1
)
4932, 37, 39, 42, 48letrd 9219 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( ( abs `  y )  -  ( abs `  x ) )  <_  1 )
5030, 31, 39lesubadd2d 9617 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( (
( abs `  y
)  -  ( abs `  x ) )  <_ 
1  <->  ( abs `  y
)  <_  ( ( abs `  x )  +  1 ) ) )
5149, 50mpbid 202 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  ( y  e.  CC  /\  ( x D y )  <_  1 ) )  ->  ( abs `  y )  <_  (
( abs `  x
)  +  1 ) )
5251ex 424 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( y  e.  CC  /\  ( x D y )  <_  1 )  ->  ( abs `  y
)  <_  ( ( abs `  x )  +  1 ) ) )
5352ss2abdv 3408 . . . . . . . 8  |-  ( x  e.  CC  ->  { y  |  ( y  e.  CC  /\  ( x D y )  <_ 
1 ) }  C_  { y  |  ( abs `  y )  <_  (
( abs `  x
)  +  1 ) } )
5428, 53sstrd 3350 . . . . . . 7  |-  ( x  e.  CC  ->  (
( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) 
C_  { y  |  ( abs `  y
)  <_  ( ( abs `  x )  +  1 ) } )
55 ssabral 3406 . . . . . . 7  |-  ( ( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) 
C_  { y  |  ( abs `  y
)  <_  ( ( abs `  x )  +  1 ) }  <->  A. y  e.  ( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) ( abs `  y
)  <_  ( ( abs `  x )  +  1 ) )
5654, 55sylib 189 . . . . . 6  |-  ( x  e.  CC  ->  A. y  e.  ( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) ( abs `  y
)  <_  ( ( abs `  x )  +  1 ) )
57 breq2 4208 . . . . . . . 8  |-  ( r  =  ( ( abs `  x )  +  1 )  ->  ( ( abs `  y )  <_ 
r  <->  ( abs `  y
)  <_  ( ( abs `  x )  +  1 ) ) )
5857ralbidv 2717 . . . . . . 7  |-  ( r  =  ( ( abs `  x )  +  1 )  ->  ( A. y  e.  ( ( cls `  ( TopOpen ` fld ) ) `  (
x ( ball `  D
) 1 ) ) ( abs `  y
)  <_  r  <->  A. y  e.  ( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) ( abs `  y
)  <_  ( ( abs `  x )  +  1 ) ) )
5958rspcev 3044 . . . . . 6  |-  ( ( ( ( abs `  x
)  +  1 )  e.  RR  /\  A. y  e.  ( ( cls `  ( TopOpen ` fld ) ) `  (
x ( ball `  D
) 1 ) ) ( abs `  y
)  <_  ( ( abs `  x )  +  1 ) )  ->  E. r  e.  RR  A. y  e.  ( ( cls `  ( TopOpen ` fld )
) `  ( x
( ball `  D )
1 ) ) ( abs `  y )  <_  r )
6024, 56, 59syl2anc 643 . . . . 5  |-  ( x  e.  CC  ->  E. r  e.  RR  A. y  e.  ( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) ( abs `  y
)  <_  r )
6119clsss3 17115 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  Top  /\  ( x ( ball `  D ) 1 ) 
C_  CC )  -> 
( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) 
C_  CC )
6211, 17, 61sylancr 645 . . . . . 6  |-  ( x  e.  CC  ->  (
( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) 
C_  CC )
63 eqid 2435 . . . . . . 7  |-  ( (
TopOpen ` fld )t  ( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) )  =  ( (
TopOpen ` fld )t  ( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) )
641, 63cnheibor 18972 . . . . . 6  |-  ( ( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) 
C_  CC  ->  ( ( ( TopOpen ` fld )t  ( ( cls `  ( TopOpen ` fld ) ) `  (
x ( ball `  D
) 1 ) ) )  e.  Comp  <->  ( (
( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) )  e.  ( Clsd `  ( TopOpen
` fld
) )  /\  E. r  e.  RR  A. y  e.  ( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) ( abs `  y
)  <_  r )
) )
6562, 64syl 16 . . . . 5  |-  ( x  e.  CC  ->  (
( ( TopOpen ` fld )t  ( ( cls `  ( TopOpen ` fld ) ) `  (
x ( ball `  D
) 1 ) ) )  e.  Comp  <->  ( (
( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) )  e.  ( Clsd `  ( TopOpen
` fld
) )  /\  E. r  e.  RR  A. y  e.  ( ( cls `  ( TopOpen
` fld
) ) `  (
x ( ball `  D
) 1 ) ) ( abs `  y
)  <_  r )
) )
6621, 60, 65mpbir2and 889 . . . 4  |-  ( x  e.  CC  ->  (
( TopOpen ` fld )t  ( ( cls `  ( TopOpen ` fld ) ) `  (
x ( ball `  D
) 1 ) ) )  e.  Comp )
6766adantl 453 . . 3  |-  ( (  T.  /\  x  e.  CC )  ->  (
( TopOpen ` fld )t  ( ( cls `  ( TopOpen ` fld ) ) `  (
x ( ball `  D
) 1 ) ) )  e.  Comp )
685, 8, 10, 67relcmpcmet 19261 . 2  |-  (  T. 
->  D  e.  ( CMet `  CC ) )
6968trud 1332 1  |-  D  e.  ( CMet `  CC )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    T. wtru 1325    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697   E.wrex 2698   {crab 2701    C_ wss 3312   class class class wbr 4204    o. ccom 4874   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   1c1 8983    + caddc 8985   RR*cxr 9111    <_ cle 9113    - cmin 9283   RR+crp 10604   abscabs 12031   ↾t crest 13640   TopOpenctopn 13641   * Metcxmt 16678   Metcme 16679   ballcbl 16680   MetOpencmopn 16683  ℂfldccnfld 16695   Topctop 16950   Clsdccld 17072   clsccl 17074   Compccmp 17441   CMetcms 19199
This theorem is referenced by:  recmet  19268  cncms  19301  cnbn  22363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-cn 17283  df-cnp 17284  df-haus 17371  df-cmp 17442  df-tx 17586  df-hmeo 17779  df-fil 17870  df-flim 17963  df-fcls 17965  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-cfil 19200  df-cmet 19202
  Copyright terms: Public domain W3C validator