MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnco Unicode version

Theorem cnco 17011
Description: The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnco  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
)  e.  ( J  Cn  L ) )

Proof of Theorem cnco
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cntop1 16986 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2 cntop2 16987 . . 3  |-  ( G  e.  ( K  Cn  L )  ->  L  e.  Top )
31, 2anim12i 549 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( J  e.  Top  /\  L  e.  Top )
)
4 eqid 2296 . . . . 5  |-  U. K  =  U. K
5 eqid 2296 . . . . 5  |-  U. L  =  U. L
64, 5cnf 16992 . . . 4  |-  ( G  e.  ( K  Cn  L )  ->  G : U. K --> U. L
)
7 eqid 2296 . . . . 5  |-  U. J  =  U. J
87, 4cnf 16992 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
9 fco 5414 . . . 4  |-  ( ( G : U. K --> U. L  /\  F : U. J --> U. K )  -> 
( G  o.  F
) : U. J --> U. L )
106, 8, 9syl2anr 464 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
) : U. J --> U. L )
11 cnvco 4881 . . . . . . 7  |-  `' ( G  o.  F )  =  ( `' F  o.  `' G )
1211imaeq1i 5025 . . . . . 6  |-  ( `' ( G  o.  F
) " x )  =  ( ( `' F  o.  `' G
) " x )
13 imaco 5194 . . . . . 6  |-  ( ( `' F  o.  `' G ) " x
)  =  ( `' F " ( `' G " x ) )
1412, 13eqtri 2316 . . . . 5  |-  ( `' ( G  o.  F
) " x )  =  ( `' F " ( `' G "
x ) )
15 simpll 730 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  F  e.  ( J  Cn  K
) )
16 cnima 17010 . . . . . . 7  |-  ( ( G  e.  ( K  Cn  L )  /\  x  e.  L )  ->  ( `' G "
x )  e.  K
)
1716adantll 694 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  ( `' G " x )  e.  K )
18 cnima 17010 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  ( `' G " x )  e.  K )  -> 
( `' F "
( `' G "
x ) )  e.  J )
1915, 17, 18syl2anc 642 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  ( `' F " ( `' G " x ) )  e.  J )
2014, 19syl5eqel 2380 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  /\  x  e.  L )  ->  ( `' ( G  o.  F ) " x
)  e.  J )
2120ralrimiva 2639 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  ->  A. x  e.  L  ( `' ( G  o.  F ) " x
)  e.  J )
2210, 21jca 518 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( ( G  o.  F ) : U. J
--> U. L  /\  A. x  e.  L  ( `' ( G  o.  F ) " x
)  e.  J ) )
237, 5iscn2 16984 . 2  |-  ( ( G  o.  F )  e.  ( J  Cn  L )  <->  ( ( J  e.  Top  /\  L  e.  Top )  /\  (
( G  o.  F
) : U. J --> U. L  /\  A. x  e.  L  ( `' ( G  o.  F
) " x )  e.  J ) ) )
243, 22, 23sylanbrc 645 1  |-  ( ( F  e.  ( J  Cn  K )  /\  G  e.  ( K  Cn  L ) )  -> 
( G  o.  F
)  e.  ( J  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696   A.wral 2556   U.cuni 3843   `'ccnv 4704   "cima 4708    o. ccom 4709   -->wf 5267  (class class class)co 5874   Topctop 16647    Cn ccn 16970
This theorem is referenced by:  kgencn2  17268  txcn  17336  xkoco1cn  17367  xkoco2cn  17368  xkococnlem  17369  xkococn  17370  cnmpt11  17373  cnmpt21  17381  hmeoco  17479  qtophmeo  17524  htpyco1  18492  htpyco2  18493  phtpyco2  18504  reparphti  18511  reparpht  18512  phtpcco2  18513  copco  18532  pi1cof  18573  pi1coghm  18575  cnpcon  23776  txsconlem  23786  txscon  23787  cvmlift3lem2  23866  cvmlift3lem4  23868  cvmlift3lem5  23869  cvmlift3lem6  23870  hausgraph  27634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-top 16652  df-topon 16655  df-cn 16973
  Copyright terms: Public domain W3C validator