MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconn Unicode version

Theorem cnconn 17148
Description: Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
cnconn.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnconn  |-  ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  ->  K  e.  Con )

Proof of Theorem cnconn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cntop2 16971 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
213ad2ant3 978 . 2  |-  ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  ->  K  e.  Top )
3 df-ne 2448 . . . . . . 7  |-  ( x  =/=  (/)  <->  -.  x  =  (/) )
4 eqid 2283 . . . . . . . . . . . 12  |-  U. J  =  U. J
5 simpl1 958 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  J  e.  Con )
6 simpl3 960 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  F  e.  ( J  Cn  K ) )
7 inss1 3389 . . . . . . . . . . . . . 14  |-  ( K  i^i  ( Clsd `  K
) )  C_  K
8 simprl 732 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  e.  ( K  i^i  ( Clsd `  K ) ) )
97, 8sseldi 3178 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  e.  K
)
10 cnima 16994 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( J  Cn  K )  /\  x  e.  K )  ->  ( `' F "
x )  e.  J
)
116, 9, 10syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( `' F " x )  e.  J
)
12 elssuni 3855 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  K  ->  x  C_ 
U. K )
139, 12syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  C_  U. K
)
14 cnconn.2 . . . . . . . . . . . . . . . . . 18  |-  Y  = 
U. K
1513, 14syl6sseqr 3225 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  C_  Y
)
16 simpl2 959 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  F : X -onto-> Y )
17 forn 5454 . . . . . . . . . . . . . . . . . 18  |-  ( F : X -onto-> Y  ->  ran  F  =  Y )
1816, 17syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ran  F  =  Y )
1915, 18sseqtr4d 3215 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  C_  ran  F )
20 df-rn 4700 . . . . . . . . . . . . . . . 16  |-  ran  F  =  dom  `' F
2119, 20syl6sseq 3224 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  C_  dom  `' F )
22 dfss1 3373 . . . . . . . . . . . . . . 15  |-  ( x 
C_  dom  `' F  <->  ( dom  `' F  i^i  x )  =  x )
2321, 22sylib 188 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( dom  `' F  i^i  x )  =  x )
24 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  =/=  (/) )
2523, 24eqnetrd 2464 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( dom  `' F  i^i  x )  =/=  (/) )
26 imadisj 5032 . . . . . . . . . . . . . 14  |-  ( ( `' F " x )  =  (/)  <->  ( dom  `' F  i^i  x )  =  (/) )
2726necon3bii 2478 . . . . . . . . . . . . 13  |-  ( ( `' F " x )  =/=  (/)  <->  ( dom  `' F  i^i  x )  =/=  (/) )
2825, 27sylibr 203 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( `' F " x )  =/=  (/) )
29 inss2 3390 . . . . . . . . . . . . . 14  |-  ( K  i^i  ( Clsd `  K
) )  C_  ( Clsd `  K )
3029, 8sseldi 3178 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  e.  (
Clsd `  K )
)
31 cnclima 16997 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( J  Cn  K )  /\  x  e.  ( Clsd `  K ) )  -> 
( `' F "
x )  e.  (
Clsd `  J )
)
326, 30, 31syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( `' F " x )  e.  (
Clsd `  J )
)
334, 5, 11, 28, 32conclo 17141 . . . . . . . . . . 11  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( `' F " x )  =  U. J )
344, 14cnf 16976 . . . . . . . . . . . 12  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> Y )
35 fdm 5393 . . . . . . . . . . . 12  |-  ( F : U. J --> Y  ->  dom  F  =  U. J
)
366, 34, 353syl 18 . . . . . . . . . . 11  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  dom  F  =  U. J )
37 fof 5451 . . . . . . . . . . . 12  |-  ( F : X -onto-> Y  ->  F : X --> Y )
38 fdm 5393 . . . . . . . . . . . 12  |-  ( F : X --> Y  ->  dom  F  =  X )
3916, 37, 383syl 18 . . . . . . . . . . 11  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  dom  F  =  X )
4033, 36, 393eqtr2d 2321 . . . . . . . . . 10  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( `' F " x )  =  X )
4140imaeq2d 5012 . . . . . . . . 9  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( F "
( `' F "
x ) )  =  ( F " X
) )
42 foimacnv 5490 . . . . . . . . . 10  |-  ( ( F : X -onto-> Y  /\  x  C_  Y )  ->  ( F "
( `' F "
x ) )  =  x )
4316, 15, 42syl2anc 642 . . . . . . . . 9  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( F "
( `' F "
x ) )  =  x )
44 foima 5456 . . . . . . . . . 10  |-  ( F : X -onto-> Y  -> 
( F " X
)  =  Y )
4516, 44syl 15 . . . . . . . . 9  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( F " X )  =  Y )
4641, 43, 453eqtr3d 2323 . . . . . . . 8  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  =  Y )
4746expr 598 . . . . . . 7  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  ( K  i^i  ( Clsd `  K ) ) )  ->  ( x  =/=  (/)  ->  x  =  Y ) )
483, 47syl5bir 209 . . . . . 6  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  ( K  i^i  ( Clsd `  K ) ) )  ->  ( -.  x  =  (/)  ->  x  =  Y ) )
4948orrd 367 . . . . 5  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  ( K  i^i  ( Clsd `  K ) ) )  ->  ( x  =  (/)  \/  x  =  Y ) )
50 vex 2791 . . . . . 6  |-  x  e. 
_V
5150elpr 3658 . . . . 5  |-  ( x  e.  { (/) ,  Y } 
<->  ( x  =  (/)  \/  x  =  Y ) )
5249, 51sylibr 203 . . . 4  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  ( K  i^i  ( Clsd `  K ) ) )  ->  x  e.  { (/)
,  Y } )
5352ex 423 . . 3  |-  ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  -> 
( x  e.  ( K  i^i  ( Clsd `  K ) )  ->  x  e.  { (/) ,  Y } ) )
5453ssrdv 3185 . 2  |-  ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  -> 
( K  i^i  ( Clsd `  K ) ) 
C_  { (/) ,  Y } )
5514iscon2 17140 . 2  |-  ( K  e.  Con  <->  ( K  e.  Top  /\  ( K  i^i  ( Clsd `  K
) )  C_  { (/) ,  Y } ) )
562, 54, 55sylanbrc 645 1  |-  ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  ->  K  e.  Con )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446    i^i cin 3151    C_ wss 3152   (/)c0 3455   {cpr 3641   U.cuni 3827   `'ccnv 4688   dom cdm 4689   ran crn 4690   "cima 4692   -->wf 5251   -onto->wfo 5253   ` cfv 5255  (class class class)co 5858   Topctop 16631   Clsdccld 16753    Cn ccn 16954   Conccon 17137
This theorem is referenced by:  conima  17151  concn  17152  qtopcon  17400  conhmph  17480  ivthALT  26258
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-top 16636  df-topon 16639  df-cld 16756  df-cn 16957  df-con 17138
  Copyright terms: Public domain W3C validator