MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2 Unicode version

Theorem cnfcom2 7623
Description: Any nonzero ordinal  B is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
cnfcom.s  |-  S  =  dom  ( om CNF  A
)
cnfcom.a  |-  ( ph  ->  A  e.  On )
cnfcom.b  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
cnfcom.f  |-  F  =  ( `' ( om CNF 
A ) `  B
)
cnfcom.g  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
cnfcom.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
cnfcom.t  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
cnfcom.m  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
cnfcom.k  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
cnfcom.w  |-  W  =  ( G `  U. dom  G )
cnfcom2.1  |-  ( ph  -> 
(/)  e.  B )
Assertion
Ref Expression
cnfcom2  |-  ( ph  ->  ( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
Distinct variable groups:    x, k,
z, A    x, M    f, k, x, z, F   
z, T    x, W    f, G, k, x, z   
f, H, x    S, k, z    ph, k, x, z
Allowed substitution hints:    ph( f)    A( f)    B( x, z, f, k)    S( x, f)    T( x, f, k)    H( z, k)    K( x, z, f, k)    M( z, f, k)    W( z, f, k)

Proof of Theorem cnfcom2
StepHypRef Expression
1 cnfcom.s . . . . 5  |-  S  =  dom  ( om CNF  A
)
2 cnfcom.a . . . . 5  |-  ( ph  ->  A  e.  On )
3 cnfcom.b . . . . 5  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
4 cnfcom.f . . . . 5  |-  F  =  ( `' ( om CNF 
A ) `  B
)
5 cnfcom.g . . . . 5  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
6 cnfcom.h . . . . 5  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
7 cnfcom.t . . . . 5  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
8 cnfcom.m . . . . 5  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
9 cnfcom.k . . . . 5  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
10 fvex 5709 . . . . . . . . . . . 12  |-  ( `' ( om CNF  A ) `  B )  e.  _V
114, 10eqeltri 2482 . . . . . . . . . . 11  |-  F  e. 
_V
1211cnvex 5373 . . . . . . . . . 10  |-  `' F  e.  _V
13 imaexg 5184 . . . . . . . . . 10  |-  ( `' F  e.  _V  ->  ( `' F " ( _V 
\  1o ) )  e.  _V )
145oion 7469 . . . . . . . . . 10  |-  ( ( `' F " ( _V 
\  1o ) )  e.  _V  ->  dom  G  e.  On )
1512, 13, 14mp2b 10 . . . . . . . . 9  |-  dom  G  e.  On
1615elexi 2933 . . . . . . . 8  |-  dom  G  e.  _V
1716uniex 4672 . . . . . . 7  |-  U. dom  G  e.  _V
1817sucid 4628 . . . . . 6  |-  U. dom  G  e.  suc  U. dom  G
19 cnfcom.w . . . . . . 7  |-  W  =  ( G `  U. dom  G )
20 cnfcom2.1 . . . . . . 7  |-  ( ph  -> 
(/)  e.  B )
211, 2, 3, 4, 5, 6, 7, 8, 9, 19, 20cnfcom2lem 7622 . . . . . 6  |-  ( ph  ->  dom  G  =  suc  U.
dom  G )
2218, 21syl5eleqr 2499 . . . . 5  |-  ( ph  ->  U. dom  G  e. 
dom  G )
231, 2, 3, 4, 5, 6, 7, 8, 9, 22cnfcom 7621 . . . 4  |-  ( ph  ->  ( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  ( G `
 U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) )
2419oveq2i 6059 . . . . . 6  |-  ( om 
^o  W )  =  ( om  ^o  ( G `  U. dom  G
) )
2519fveq2i 5698 . . . . . 6  |-  ( F `
 W )  =  ( F `  ( G `  U. dom  G
) )
2624, 25oveq12i 6060 . . . . 5  |-  ( ( om  ^o  W )  .o  ( F `  W ) )  =  ( ( om  ^o  ( G `  U. dom  G ) )  .o  ( F `  ( G `  U. dom  G ) ) )
27 f1oeq3 5634 . . . . 5  |-  ( ( ( om  ^o  W
)  .o  ( F `
 W ) )  =  ( ( om 
^o  ( G `  U. dom  G ) )  .o  ( F `  ( G `  U. dom  G ) ) )  -> 
( ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  ( G `
 U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) ) )
2826, 27ax-mp 8 . . . 4  |-  ( ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  ( G `  U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) )
2923, 28sylibr 204 . . 3  |-  ( ph  ->  ( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
3021fveq2d 5699 . . . 4  |-  ( ph  ->  ( T `  dom  G )  =  ( T `
 suc  U. dom  G
) )
31 f1oeq1 5632 . . . 4  |-  ( ( T `  dom  G
)  =  ( T `
 suc  U. dom  G
)  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) ) )
3230, 31syl 16 . . 3  |-  ( ph  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) ) ) )
3329, 32mpbird 224 . 2  |-  ( ph  ->  ( T `  dom  G ) : ( H `
 suc  U. dom  G
)
-1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
) )
344fveq2i 5698 . . . . 5  |-  ( ( om CNF  A ) `  F )  =  ( ( om CNF  A ) `  ( `' ( om CNF 
A ) `  B
) )
35 omelon 7565 . . . . . . 7  |-  om  e.  On
3635a1i 11 . . . . . 6  |-  ( ph  ->  om  e.  On )
371, 36, 2cantnff1o 7616 . . . . . . . . 9  |-  ( ph  ->  ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
) )
38 f1ocnv 5654 . . . . . . . . 9  |-  ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  ->  `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S )
39 f1of 5641 . . . . . . . . 9  |-  ( `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S  ->  `' ( om CNF  A ) : ( om  ^o  A ) --> S )
4037, 38, 393syl 19 . . . . . . . 8  |-  ( ph  ->  `' ( om CNF  A
) : ( om 
^o  A ) --> S )
4140, 3ffvelrnd 5838 . . . . . . 7  |-  ( ph  ->  ( `' ( om CNF 
A ) `  B
)  e.  S )
424, 41syl5eqel 2496 . . . . . 6  |-  ( ph  ->  F  e.  S )
438oveq1i 6058 . . . . . . . . . 10  |-  ( M  +o  z )  =  ( ( ( om 
^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
)
4443a1i 11 . . . . . . . . 9  |-  ( ( k  e.  _V  /\  z  e.  _V )  ->  ( M  +o  z
)  =  ( ( ( om  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) )
4544mpt2eq3ia 6106 . . . . . . . 8  |-  ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z ) )  =  ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) )
46 eqid 2412 . . . . . . . 8  |-  (/)  =  (/)
47 seqomeq12 6678 . . . . . . . 8  |-  ( ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) )  =  ( k  e.  _V , 
z  e.  _V  |->  ( ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) )  /\  (/)  =  (/) )  -> seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) ) )
4845, 46, 47mp2an 654 . . . . . . 7  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( M  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) )
496, 48eqtri 2432 . . . . . 6  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( om 
^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
501, 36, 2, 5, 42, 49cantnfval 7587 . . . . 5  |-  ( ph  ->  ( ( om CNF  A
) `  F )  =  ( H `  dom  G ) )
5134, 50syl5reqr 2459 . . . 4  |-  ( ph  ->  ( H `  dom  G )  =  ( ( om CNF  A ) `  ( `' ( om CNF  A
) `  B )
) )
5221fveq2d 5699 . . . 4  |-  ( ph  ->  ( H `  dom  G )  =  ( H `
 suc  U. dom  G
) )
53 f1ocnvfv2 5982 . . . . 5  |-  ( ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  /\  B  e.  ( om  ^o  A ) )  ->  ( ( om CNF  A ) `  ( `' ( om CNF  A
) `  B )
)  =  B )
5437, 3, 53syl2anc 643 . . . 4  |-  ( ph  ->  ( ( om CNF  A
) `  ( `' ( om CNF  A ) `  B ) )  =  B )
5551, 52, 543eqtr3d 2452 . . 3  |-  ( ph  ->  ( H `  suc  U.
dom  G )  =  B )
56 f1oeq2 5633 . . 3  |-  ( ( H `  suc  U. dom  G )  =  B  ->  ( ( T `
 dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) ) )
5755, 56syl 16 . 2  |-  ( ph  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  dom  G ) : B -1-1-onto-> (
( om  ^o  W
)  .o  ( F `
 W ) ) ) )
5833, 57mpbid 202 1  |-  ( ph  ->  ( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2924    \ cdif 3285    u. cun 3286   (/)c0 3596   U.cuni 3983    e. cmpt 4234    _E cep 4460   Oncon0 4549   suc csuc 4551   omcom 4812   `'ccnv 4844   dom cdm 4845   "cima 4848   -->wf 5417   -1-1-onto->wf1o 5420   ` cfv 5421  (class class class)co 6048    e. cmpt2 6050  seq𝜔cseqom 6671   1oc1o 6684    +o coa 6688    .o comu 6689    ^o coe 6690  OrdIsocoi 7442   CNF ccnf 7580
This theorem is referenced by:  cnfcom3  7625
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-inf2 7560
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-se 4510  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-seqom 6672  df-1o 6691  df-2o 6692  df-oadd 6695  df-omul 6696  df-oexp 6697  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-oi 7443  df-cnf 7581
  Copyright terms: Public domain W3C validator