MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom3 Structured version   Unicode version

Theorem cnfcom3 7664
Description: Any infinite ordinal  B is equinumerous to a power of  om. (We are being careful here to show explicit bijections rather than simple equinumerosity because we want a uniform construction for cnfcom3c 7666.) (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cnfcom.s  |-  S  =  dom  ( om CNF  A
)
cnfcom.a  |-  ( ph  ->  A  e.  On )
cnfcom.b  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
cnfcom.f  |-  F  =  ( `' ( om CNF 
A ) `  B
)
cnfcom.g  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
cnfcom.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
cnfcom.t  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
cnfcom.m  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
cnfcom.k  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
cnfcom.w  |-  W  =  ( G `  U. dom  G )
cnfcom3.1  |-  ( ph  ->  om  C_  B )
cnfcom.x  |-  X  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( F `
 W )  .o  v )  +o  u
) )
cnfcom.y  |-  Y  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( om 
^o  W )  .o  u )  +o  v
) )
cnfcom.n  |-  N  =  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) )
Assertion
Ref Expression
cnfcom3  |-  ( ph  ->  N : B -1-1-onto-> ( om 
^o  W ) )
Distinct variable groups:    x, k,
z, A    u, k,
v, x, z    x, M    ph, u, v    f,
k, u, v, x, z, F    u, K, v    u, T, v, z   
u, W, v, x   
f, G, k, u, v, x, z    f, H, u, v, x    S, k, z    ph, k, x, z
Allowed substitution hints:    ph( f)    A( v, u, f)    B( x, z, v, u, f, k)    S( x, v, u, f)    T( x, f, k)    H( z, k)    K( x, z, f, k)    M( z, v, u, f, k)    N( x, z, v, u, f, k)    W( z, f, k)    X( x, z, v, u, f, k)    Y( x, z, v, u, f, k)

Proof of Theorem cnfcom3
StepHypRef Expression
1 omelon 7604 . . . . . 6  |-  om  e.  On
2 cnfcom.a . . . . . . 7  |-  ( ph  ->  A  e.  On )
3 cnvimass 5227 . . . . . . . . 9  |-  ( `' F " ( _V 
\  1o ) ) 
C_  dom  F
4 cnfcom.f . . . . . . . . . . . . 13  |-  F  =  ( `' ( om CNF 
A ) `  B
)
5 cnfcom.s . . . . . . . . . . . . . . . 16  |-  S  =  dom  ( om CNF  A
)
61a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  om  e.  On )
75, 6, 2cantnff1o 7655 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
) )
8 f1ocnv 5690 . . . . . . . . . . . . . . 15  |-  ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  ->  `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S )
9 f1of 5677 . . . . . . . . . . . . . . 15  |-  ( `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S  ->  `' ( om CNF  A ) : ( om  ^o  A ) --> S )
107, 8, 93syl 19 . . . . . . . . . . . . . 14  |-  ( ph  ->  `' ( om CNF  A
) : ( om 
^o  A ) --> S )
11 cnfcom.b . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
1210, 11ffvelrnd 5874 . . . . . . . . . . . . 13  |-  ( ph  ->  ( `' ( om CNF 
A ) `  B
)  e.  S )
134, 12syl5eqel 2522 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  S )
145, 6, 2cantnfs 7624 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  e.  S  <->  ( F : A --> om  /\  ( `' F " ( _V 
\  1o ) )  e.  Fin ) ) )
1513, 14mpbid 203 . . . . . . . . . . 11  |-  ( ph  ->  ( F : A --> om  /\  ( `' F " ( _V  \  1o ) )  e.  Fin ) )
1615simpld 447 . . . . . . . . . 10  |-  ( ph  ->  F : A --> om )
17 fdm 5598 . . . . . . . . . 10  |-  ( F : A --> om  ->  dom 
F  =  A )
1816, 17syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  A )
193, 18syl5sseq 3398 . . . . . . . 8  |-  ( ph  ->  ( `' F "
( _V  \  1o ) )  C_  A
)
20 cnfcom.w . . . . . . . . 9  |-  W  =  ( G `  U. dom  G )
21 fvex 5745 . . . . . . . . . . . . . . . . 17  |-  ( `' ( om CNF  A ) `  B )  e.  _V
224, 21eqeltri 2508 . . . . . . . . . . . . . . . 16  |-  F  e. 
_V
2322cnvex 5409 . . . . . . . . . . . . . . 15  |-  `' F  e.  _V
24 imaexg 5220 . . . . . . . . . . . . . . 15  |-  ( `' F  e.  _V  ->  ( `' F " ( _V 
\  1o ) )  e.  _V )
25 cnfcom.g . . . . . . . . . . . . . . . 16  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
2625oion 7508 . . . . . . . . . . . . . . 15  |-  ( ( `' F " ( _V 
\  1o ) )  e.  _V  ->  dom  G  e.  On )
2723, 24, 26mp2b 10 . . . . . . . . . . . . . 14  |-  dom  G  e.  On
2827elexi 2967 . . . . . . . . . . . . 13  |-  dom  G  e.  _V
2928uniex 4708 . . . . . . . . . . . 12  |-  U. dom  G  e.  _V
3029sucid 4663 . . . . . . . . . . 11  |-  U. dom  G  e.  suc  U. dom  G
31 cnfcom.h . . . . . . . . . . . 12  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
32 cnfcom.t . . . . . . . . . . . 12  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
33 cnfcom.m . . . . . . . . . . . 12  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
34 cnfcom.k . . . . . . . . . . . 12  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
35 cnfcom3.1 . . . . . . . . . . . . 13  |-  ( ph  ->  om  C_  B )
36 peano1 4867 . . . . . . . . . . . . . 14  |-  (/)  e.  om
3736a1i 11 . . . . . . . . . . . . 13  |-  ( ph  -> 
(/)  e.  om )
3835, 37sseldd 3351 . . . . . . . . . . . 12  |-  ( ph  -> 
(/)  e.  B )
395, 2, 11, 4, 25, 31, 32, 33, 34, 20, 38cnfcom2lem 7661 . . . . . . . . . . 11  |-  ( ph  ->  dom  G  =  suc  U.
dom  G )
4030, 39syl5eleqr 2525 . . . . . . . . . 10  |-  ( ph  ->  U. dom  G  e. 
dom  G )
4125oif 7502 . . . . . . . . . . 11  |-  G : dom  G --> ( `' F " ( _V  \  1o ) )
4241ffvelrni 5872 . . . . . . . . . 10  |-  ( U. dom  G  e.  dom  G  ->  ( G `  U. dom  G )  e.  ( `' F " ( _V 
\  1o ) ) )
4340, 42syl 16 . . . . . . . . 9  |-  ( ph  ->  ( G `  U. dom  G )  e.  ( `' F " ( _V 
\  1o ) ) )
4420, 43syl5eqel 2522 . . . . . . . 8  |-  ( ph  ->  W  e.  ( `' F " ( _V 
\  1o ) ) )
4519, 44sseldd 3351 . . . . . . 7  |-  ( ph  ->  W  e.  A )
46 onelon 4609 . . . . . . 7  |-  ( ( A  e.  On  /\  W  e.  A )  ->  W  e.  On )
472, 45, 46syl2anc 644 . . . . . 6  |-  ( ph  ->  W  e.  On )
48 oecl 6784 . . . . . 6  |-  ( ( om  e.  On  /\  W  e.  On )  ->  ( om  ^o  W
)  e.  On )
491, 47, 48sylancr 646 . . . . 5  |-  ( ph  ->  ( om  ^o  W
)  e.  On )
5016, 45ffvelrnd 5874 . . . . . 6  |-  ( ph  ->  ( F `  W
)  e.  om )
51 nnon 4854 . . . . . 6  |-  ( ( F `  W )  e.  om  ->  ( F `  W )  e.  On )
5250, 51syl 16 . . . . 5  |-  ( ph  ->  ( F `  W
)  e.  On )
53 cnfcom.y . . . . . 6  |-  Y  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( om 
^o  W )  .o  u )  +o  v
) )
54 cnfcom.x . . . . . 6  |-  X  =  ( u  e.  ( F `  W ) ,  v  e.  ( om  ^o  W ) 
|->  ( ( ( F `
 W )  .o  v )  +o  u
) )
5553, 54omf1o 7214 . . . . 5  |-  ( ( ( om  ^o  W
)  e.  On  /\  ( F `  W )  e.  On )  -> 
( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( ( F `  W
)  .o  ( om 
^o  W ) ) )
5649, 52, 55syl2anc 644 . . . 4  |-  ( ph  ->  ( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( ( F `  W
)  .o  ( om 
^o  W ) ) )
57 ffn 5594 . . . . . . . . . . 11  |-  ( F : A --> om  ->  F  Fn  A )
58 elpreima 5853 . . . . . . . . . . 11  |-  ( F  Fn  A  ->  ( W  e.  ( `' F " ( _V  \  1o ) )  <->  ( W  e.  A  /\  ( F `  W )  e.  ( _V  \  1o ) ) ) )
5916, 57, 583syl 19 . . . . . . . . . 10  |-  ( ph  ->  ( W  e.  ( `' F " ( _V 
\  1o ) )  <-> 
( W  e.  A  /\  ( F `  W
)  e.  ( _V 
\  1o ) ) ) )
6044, 59mpbid 203 . . . . . . . . 9  |-  ( ph  ->  ( W  e.  A  /\  ( F `  W
)  e.  ( _V 
\  1o ) ) )
6160simprd 451 . . . . . . . 8  |-  ( ph  ->  ( F `  W
)  e.  ( _V 
\  1o ) )
62 dif1o 6747 . . . . . . . . 9  |-  ( ( F `  W )  e.  ( _V  \  1o )  <->  ( ( F `
 W )  e. 
_V  /\  ( F `  W )  =/=  (/) ) )
6362simprbi 452 . . . . . . . 8  |-  ( ( F `  W )  e.  ( _V  \  1o )  ->  ( F `
 W )  =/=  (/) )
6461, 63syl 16 . . . . . . 7  |-  ( ph  ->  ( F `  W
)  =/=  (/) )
65 on0eln0 4639 . . . . . . . 8  |-  ( ( F `  W )  e.  On  ->  ( (/) 
e.  ( F `  W )  <->  ( F `  W )  =/=  (/) ) )
6650, 51, 653syl 19 . . . . . . 7  |-  ( ph  ->  ( (/)  e.  ( F `  W )  <->  ( F `  W )  =/=  (/) ) )
6764, 66mpbird 225 . . . . . 6  |-  ( ph  -> 
(/)  e.  ( F `  W ) )
685, 2, 11, 4, 25, 31, 32, 33, 34, 20, 35cnfcom3lem 7663 . . . . . . 7  |-  ( ph  ->  W  e.  ( On 
\  1o ) )
69 ondif1 6748 . . . . . . . 8  |-  ( W  e.  ( On  \  1o )  <->  ( W  e.  On  /\  (/)  e.  W
) )
7069simprbi 452 . . . . . . 7  |-  ( W  e.  ( On  \  1o )  ->  (/)  e.  W
)
7168, 70syl 16 . . . . . 6  |-  ( ph  -> 
(/)  e.  W )
72 omabs 6893 . . . . . 6  |-  ( ( ( ( F `  W )  e.  om  /\  (/)  e.  ( F `  W ) )  /\  ( W  e.  On  /\  (/)  e.  W ) )  ->  ( ( F `
 W )  .o  ( om  ^o  W
) )  =  ( om  ^o  W ) )
7350, 67, 47, 71, 72syl22anc 1186 . . . . 5  |-  ( ph  ->  ( ( F `  W )  .o  ( om  ^o  W ) )  =  ( om  ^o  W ) )
74 f1oeq3 5670 . . . . 5  |-  ( ( ( F `  W
)  .o  ( om 
^o  W ) )  =  ( om  ^o  W )  ->  (
( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( ( F `  W
)  .o  ( om 
^o  W ) )  <-> 
( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( om  ^o  W ) ) )
7573, 74syl 16 . . . 4  |-  ( ph  ->  ( ( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( ( F `  W
)  .o  ( om 
^o  W ) )  <-> 
( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( om  ^o  W ) ) )
7656, 75mpbid 203 . . 3  |-  ( ph  ->  ( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( om  ^o  W ) )
775, 2, 11, 4, 25, 31, 32, 33, 34, 20, 38cnfcom2 7662 . . 3  |-  ( ph  ->  ( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
78 f1oco 5701 . . 3  |-  ( ( ( X  o.  `' Y ) : ( ( om  ^o  W
)  .o  ( F `
 W ) ) -1-1-onto-> ( om  ^o  W )  /\  ( T `  dom  G ) : B -1-1-onto-> (
( om  ^o  W
)  .o  ( F `
 W ) ) )  ->  ( ( X  o.  `' Y
)  o.  ( T `
 dom  G )
) : B -1-1-onto-> ( om 
^o  W ) )
7976, 77, 78syl2anc 644 . 2  |-  ( ph  ->  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) ) : B -1-1-onto-> ( om 
^o  W ) )
80 cnfcom.n . . 3  |-  N  =  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) )
81 f1oeq1 5668 . . 3  |-  ( N  =  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) )  -> 
( N : B -1-1-onto-> ( om  ^o  W )  <->  ( ( X  o.  `' Y
)  o.  ( T `
 dom  G )
) : B -1-1-onto-> ( om 
^o  W ) ) )
8280, 81ax-mp 5 . 2  |-  ( N : B -1-1-onto-> ( om  ^o  W
)  <->  ( ( X  o.  `' Y )  o.  ( T `  dom  G ) ) : B -1-1-onto-> ( om  ^o  W
) )
8379, 82sylibr 205 1  |-  ( ph  ->  N : B -1-1-onto-> ( om 
^o  W ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   _Vcvv 2958    \ cdif 3319    u. cun 3320    C_ wss 3322   (/)c0 3630   U.cuni 4017    e. cmpt 4269    _E cep 4495   Oncon0 4584   suc csuc 4586   omcom 4848   `'ccnv 4880   dom cdm 4881   "cima 4884    o. ccom 4885    Fn wfn 5452   -->wf 5453   -1-1-onto->wf1o 5456   ` cfv 5457  (class class class)co 6084    e. cmpt2 6086  seq𝜔cseqom 6707   1oc1o 6720    +o coa 6724    .o comu 6725    ^o coe 6726   Fincfn 7112  OrdIsocoi 7481   CNF ccnf 7619
This theorem is referenced by:  cnfcom3clem  7665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-seqom 6708  df-1o 6727  df-2o 6728  df-oadd 6731  df-omul 6732  df-oexp 6733  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-oi 7482  df-cnf 7620
  Copyright terms: Public domain W3C validator