Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnfex Structured version   Unicode version

Theorem cnfex 27656
Description: The class of continuous functions between two topologies is a set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Assertion
Ref Expression
cnfex  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  Cn  K
)  e.  _V )

Proof of Theorem cnfex
Dummy variables  y 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . . 5  |-  U. J  =  U. J
21jctr 527 . . . 4  |-  ( J  e.  Top  ->  ( J  e.  Top  /\  U. J  =  U. J ) )
3 istopon 16982 . . . 4  |-  ( J  e.  (TopOn `  U. J )  <->  ( J  e.  Top  /\  U. J  =  U. J ) )
42, 3sylibr 204 . . 3  |-  ( J  e.  Top  ->  J  e.  (TopOn `  U. J ) )
5 eqid 2435 . . . . 5  |-  U. K  =  U. K
65jctr 527 . . . 4  |-  ( K  e.  Top  ->  ( K  e.  Top  /\  U. K  =  U. K ) )
7 istopon 16982 . . . 4  |-  ( K  e.  (TopOn `  U. K )  <->  ( K  e.  Top  /\  U. K  =  U. K ) )
86, 7sylibr 204 . . 3  |-  ( K  e.  Top  ->  K  e.  (TopOn `  U. K ) )
9 cnfval 17289 . . 3  |-  ( ( J  e.  (TopOn `  U. J )  /\  K  e.  (TopOn `  U. K ) )  ->  ( J  Cn  K )  =  {
f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  ( `' f
" y )  e.  J } )
104, 8, 9syl2an 464 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  Cn  K
)  =  { f  e.  ( U. K  ^m  U. J )  | 
A. y  e.  K  ( `' f " y
)  e.  J }
)
11 uniexg 4698 . . . . 5  |-  ( K  e.  Top  ->  U. K  e.  _V )
12 uniexg 4698 . . . . 5  |-  ( J  e.  Top  ->  U. J  e.  _V )
13 mapvalg 7020 . . . . 5  |-  ( ( U. K  e.  _V  /\ 
U. J  e.  _V )  ->  ( U. K  ^m  U. J )  =  { f  |  f : U. J --> U. K } )
1411, 12, 13syl2anr 465 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( U. K  ^m  U. J )  =  {
f  |  f : U. J --> U. K } )
15 mapex 7016 . . . . 5  |-  ( ( U. J  e.  _V  /\ 
U. K  e.  _V )  ->  { f  |  f : U. J --> U. K }  e.  _V )
1612, 11, 15syl2an 464 . . . 4  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  { f  |  f : U. J --> U. K }  e.  _V )
1714, 16eqeltrd 2509 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( U. K  ^m  U. J )  e.  _V )
18 rabexg 4345 . . 3  |-  ( ( U. K  ^m  U. J )  e.  _V  ->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  ( `' f " y
)  e.  J }  e.  _V )
1917, 18syl 16 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  { f  e.  ( U. K  ^m  U. J )  |  A. y  e.  K  ( `' f " y
)  e.  J }  e.  _V )
2010, 19eqeltrd 2509 1  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  Cn  K
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697   {crab 2701   _Vcvv 2948   U.cuni 4007   `'ccnv 4869   "cima 4873   -->wf 5442   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   Topctop 16950  TopOnctopon 16951    Cn ccn 17280
This theorem is referenced by:  stoweidlem53  27759  stoweidlem57  27763  stoweidlem59  27765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-map 7012  df-topon 16958  df-cn 17283
  Copyright terms: Public domain W3C validator