MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldadd Unicode version

Theorem cnfldadd 16631
Description: The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldadd  |-  +  =  ( +g  ` fld )

Proof of Theorem cnfldadd
StepHypRef Expression
1 addex 10542 . 2  |-  +  e.  _V
2 cnfldstr 16628 . . 3  |-fld Struct 
<. 1 , ; 1 3 >.
3 plusgid 13491 . . 3  |-  +g  = Slot  ( +g  `  ndx )
4 snsstp2 3893 . . . 4  |-  { <. ( +g  `  ndx ) ,  +  >. }  C_  {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }
5 ssun1 3453 . . . . 5  |-  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  C_  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( * r `  ndx ) ,  * >. } )
6 ssun1 3453 . . . . . 6  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( * r `  ndx ) ,  * >. } )  C_  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( * r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
7 df-cnfld 16627 . . . . . 6  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( * r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
86, 7sseqtr4i 3324 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( * r `  ndx ) ,  * >. } )  C_fld
95, 8sstri 3300 . . . 4  |-  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  C_fld
104, 9sstri 3300 . . 3  |-  { <. ( +g  `  ndx ) ,  +  >. }  C_fld
112, 3, 10strfv 13428 . 2  |-  (  +  e.  _V  ->  +  =  ( +g  ` fld ) )
121, 11ax-mp 8 1  |-  +  =  ( +g  ` fld )
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717   _Vcvv 2899    u. cun 3261   {csn 3757   {ctp 3759   <.cop 3760    o. ccom 4822   ` cfv 5394   CCcc 8921   1c1 8924    + caddc 8926    x. cmul 8928    <_ cle 9054    - cmin 9223   3c3 9982  ;cdc 10314   *ccj 11828   abscabs 11966   ndxcnx 13393   Basecbs 13396   +g cplusg 13456   .rcmulr 13457   * rcstv 13458  TopSetcts 13462   lecple 13463   distcds 13465   UnifSetcunif 13466   MetOpencmopn 16617  metUnifcmetu 16618  ℂfldccnfld 16626
This theorem is referenced by:  cncrng  16645  cnfld0  16648  cnfldneg  16650  cnfldplusf  16651  cnfldsub  16652  cnfldmulg  16656  cnsrng  16658  cnsubmlem  16669  cnsubglem  16670  absabv  16679  cnsubrg  16682  gsumfsum  16689  zlpirlem3  16693  expmhm  16699  expghm  16700  mulgghm2  16709  zlmlmod  16727  cygznlem3  16773  clmadd  18970  clmacl  18979  cphsqrcl2  19020  ipcau2  19062  tdeglem3  19849  tdeglem4  19850  taylply2  20151  reefgim  20233  jensenlem1  20692  jensenlem2  20693  amgmlem  20695  qabvle  21186  padicabv  21191  ostth2lem2  21195  ostth3  21199  zzsplusg  24080  replusg  24087  qqhghm  24171  qqhrhm  24172  esumpfinvallem  24260  mzpmfp  26495  fsumcnsrcl  27040  rngunsnply  27047  deg1mhm  27195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-addf 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-fz 10976  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-plusg 13469  df-mulr 13470  df-starv 13471  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-cnfld 16627
  Copyright terms: Public domain W3C validator