MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldneg Unicode version

Theorem cnfldneg 16416
Description: The additive inverse in the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
cnfldneg  |-  ( X  e.  CC  ->  (
( inv g ` fld ) `  X )  =  -u X )

Proof of Theorem cnfldneg
StepHypRef Expression
1 negid 9110 . 2  |-  ( X  e.  CC  ->  ( X  +  -u X )  =  0 )
2 negcl 9068 . . 3  |-  ( X  e.  CC  ->  -u X  e.  CC )
3 cnrng 16412 . . . . 5  |-fld  e.  Ring
4 rnggrp 15362 . . . . 5  |-  (fld  e.  Ring  ->fld  e.  Grp )
53, 4ax-mp 8 . . . 4  |-fld  e.  Grp
6 cnfldbas 16399 . . . . 5  |-  CC  =  ( Base ` fld )
7 cnfldadd 16400 . . . . 5  |-  +  =  ( +g  ` fld )
8 cnfld0 16414 . . . . 5  |-  0  =  ( 0g ` fld )
9 eqid 2296 . . . . 5  |-  ( inv g ` fld )  =  ( inv g ` fld )
106, 7, 8, 9grpinvid1 14546 . . . 4  |-  ( (fld  e. 
Grp  /\  X  e.  CC  /\  -u X  e.  CC )  ->  ( ( ( inv g ` fld ) `  X )  =  -u X  <->  ( X  +  -u X )  =  0 ) )
115, 10mp3an1 1264 . . 3  |-  ( ( X  e.  CC  /\  -u X  e.  CC )  ->  ( ( ( inv g ` fld ) `  X )  =  -u X  <->  ( X  +  -u X )  =  0 ) )
122, 11mpdan 649 . 2  |-  ( X  e.  CC  ->  (
( ( inv g ` fld ) `  X )  =  -u X  <->  ( X  +  -u X )  =  0 ) )
131, 12mpbird 223 1  |-  ( X  e.  CC  ->  (
( inv g ` fld ) `  X )  =  -u X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753    + caddc 8756   -ucneg 9054   Grpcgrp 14378   inv gcminusg 14379   Ringcrg 15353  ℂfldccnfld 16393
This theorem is referenced by:  cnfldsub  16418  cnfldmulg  16422  cnsubglem  16436  zlpirlem1  16457  prmirred  16464  clmneg  18595  cphsqrcl3  18639  taylply2  19763  qrngneg  20788  rngunsnply  27481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-mulr 13238  df-starv 13239  df-tset 13243  df-ple 13244  df-ds 13246  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-cmn 15107  df-mgp 15342  df-rng 15356  df-cring 15357  df-cnfld 16394
  Copyright terms: Public domain W3C validator