MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnflf Unicode version

Theorem cnflf 17799
Description: A function is continuous iff it respects filter limits. (Contributed by Jeff Hankins, 6-Sep-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
cnflf  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. f  e.  ( Fil `  X
) A. x  e.  ( J  fLim  f
) ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) ) ) )
Distinct variable groups:    x, f, X    f, Y, x    f, F, x    f, J, x   
f, K, x

Proof of Theorem cnflf
StepHypRef Expression
1 cncnp 17115 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
2 cnpflf 17798 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  x  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <-> 
( F : X --> Y  /\  A. f  e.  ( Fil `  X
) ( x  e.  ( J  fLim  f
)  ->  ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) ) ) ) )
323expa 1151 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <->  ( F : X --> Y  /\  A. f  e.  ( Fil `  X ) ( x  e.  ( J  fLim  f )  ->  ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) ) ) ) )
43adantlr 695 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <-> 
( F : X --> Y  /\  A. f  e.  ( Fil `  X
) ( x  e.  ( J  fLim  f
)  ->  ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) ) ) ) )
5 simplr 731 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  F : X
--> Y )
65biantrurd 494 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  ( A. f  e.  ( Fil `  X ) ( x  e.  ( J  fLim  f )  ->  ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) )  <-> 
( F : X --> Y  /\  A. f  e.  ( Fil `  X
) ( x  e.  ( J  fLim  f
)  ->  ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) ) ) ) )
74, 6bitr4d 247 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  x )  <->  A. f  e.  ( Fil `  X ) ( x  e.  ( J 
fLim  f )  -> 
( F `  x
)  e.  ( ( K  fLimf  f ) `  F ) ) ) )
87ralbidva 2635 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  <->  A. x  e.  X  A. f  e.  ( Fil `  X
) ( x  e.  ( J  fLim  f
)  ->  ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) ) ) )
9 eqid 2358 . . . . . . . . . . . 12  |-  U. J  =  U. J
109flimelbas 17765 . . . . . . . . . . 11  |-  ( x  e.  ( J  fLim  f )  ->  x  e.  U. J )
11 toponuni 16771 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1211ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  X  =  U. J )
1312eleq2d 2425 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
x  e.  X  <->  x  e.  U. J ) )
1410, 13syl5ibr 212 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
x  e.  ( J 
fLim  f )  ->  x  e.  X )
)
1514pm4.71rd 616 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
x  e.  ( J 
fLim  f )  <->  ( x  e.  X  /\  x  e.  ( J  fLim  f
) ) ) )
1615imbi1d 308 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ( J  fLim  f )  ->  ( F `  x
)  e.  ( ( K  fLimf  f ) `  F ) )  <->  ( (
x  e.  X  /\  x  e.  ( J  fLim  f ) )  -> 
( F `  x
)  e.  ( ( K  fLimf  f ) `  F ) ) ) )
17 impexp 433 . . . . . . . 8  |-  ( ( ( x  e.  X  /\  x  e.  ( J  fLim  f ) )  ->  ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) )  <-> 
( x  e.  X  ->  ( x  e.  ( J  fLim  f )  ->  ( F `  x
)  e.  ( ( K  fLimf  f ) `  F ) ) ) )
1816, 17syl6bb 252 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ( J  fLim  f )  ->  ( F `  x
)  e.  ( ( K  fLimf  f ) `  F ) )  <->  ( x  e.  X  ->  ( x  e.  ( J  fLim  f )  ->  ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) ) ) ) )
1918ralbidv2 2641 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. x  e.  ( J  fLim  f ) ( F `  x )  e.  ( ( K 
fLimf  f ) `  F
)  <->  A. x  e.  X  ( x  e.  ( J  fLim  f )  -> 
( F `  x
)  e.  ( ( K  fLimf  f ) `  F ) ) ) )
2019ralbidv 2639 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. f  e.  ( Fil `  X ) A. x  e.  ( J  fLim  f ) ( F `
 x )  e.  ( ( K  fLimf  f ) `  F )  <->  A. f  e.  ( Fil `  X ) A. x  e.  X  (
x  e.  ( J 
fLim  f )  -> 
( F `  x
)  e.  ( ( K  fLimf  f ) `  F ) ) ) )
21 ralcom 2776 . . . . 5  |-  ( A. f  e.  ( Fil `  X ) A. x  e.  X  ( x  e.  ( J  fLim  f
)  ->  ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) )  <->  A. x  e.  X  A. f  e.  ( Fil `  X ) ( x  e.  ( J 
fLim  f )  -> 
( F `  x
)  e.  ( ( K  fLimf  f ) `  F ) ) )
2220, 21syl6bb 252 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. f  e.  ( Fil `  X ) A. x  e.  ( J  fLim  f ) ( F `
 x )  e.  ( ( K  fLimf  f ) `  F )  <->  A. x  e.  X  A. f  e.  ( Fil `  X ) ( x  e.  ( J 
fLim  f )  -> 
( F `  x
)  e.  ( ( K  fLimf  f ) `  F ) ) ) )
238, 22bitr4d 247 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  <->  A. f  e.  ( Fil `  X
) A. x  e.  ( J  fLim  f
) ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) ) )
2423pm5.32da 622 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  <->  ( F : X
--> Y  /\  A. f  e.  ( Fil `  X
) A. x  e.  ( J  fLim  f
) ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) ) ) )
251, 24bitrd 244 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. f  e.  ( Fil `  X
) A. x  e.  ( J  fLim  f
) ( F `  x )  e.  ( ( K  fLimf  f ) `
 F ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   A.wral 2619   U.cuni 3908   -->wf 5333   ` cfv 5337  (class class class)co 5945  TopOnctopon 16738    Cn ccn 17060    CnP ccnp 17061   Filcfil 17642    fLim cflim 17731    fLimf cflf 17732
This theorem is referenced by:  cnflf2  17800  fmcncfil  23473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-map 6862  df-topgen 13443  df-fbas 16479  df-fg 16480  df-top 16742  df-topon 16745  df-ntr 16863  df-nei 16941  df-cn 17063  df-cnp 17064  df-fil 17643  df-fm 17735  df-flim 17736  df-flf 17737
  Copyright terms: Public domain W3C validator