MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheiborlem Unicode version

Theorem cnheiborlem 18468
Description: Lemma for cnheibor 18469. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2  |-  J  =  ( TopOpen ` fld )
cnheibor.3  |-  T  =  ( Jt  X )
cnheibor.4  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
cnheibor.5  |-  Y  =  ( F " (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )
Assertion
Ref Expression
cnheiborlem  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  T  e.  Comp )
Distinct variable groups:    x, y,
z    z, F    z, R    x, T, y, z    x, J, y, z    x, X, y, z
Allowed substitution hints:    R( x, y)    F( x, y)    Y( x, y, z)

Proof of Theorem cnheiborlem
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . . 6  |-  J  =  ( TopOpen ` fld )
21cnfldtop 18309 . . . . 5  |-  J  e. 
Top
32a1i 10 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  J  e.  Top )
4 cnheibor.4 . . . . . . . . . 10  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
54cnref1o 10365 . . . . . . . . 9  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
6 f1ofn 5489 . . . . . . . . 9  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  F  Fn  ( RR  X.  RR ) )
7 elpreima 5661 . . . . . . . . 9  |-  ( F  Fn  ( RR  X.  RR )  ->  ( u  e.  ( `' F " X )  <->  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) ) )
85, 6, 7mp2b 9 . . . . . . . 8  |-  ( u  e.  ( `' F " X )  <->  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )
9 1st2nd2 6175 . . . . . . . . . . 11  |-  ( u  e.  ( RR  X.  RR )  ->  u  = 
<. ( 1st `  u
) ,  ( 2nd `  u ) >. )
109ad2antrl 708 . . . . . . . . . 10  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
11 xp1st 6165 . . . . . . . . . . . . 13  |-  ( u  e.  ( RR  X.  RR )  ->  ( 1st `  u )  e.  RR )
1211ad2antrl 708 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  e.  RR )
1312recnd 8877 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  e.  CC )
1413abscld 11934 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  e.  RR )
151cnfldtopon 18308 . . . . . . . . . . . . . . . . . . . . 21  |-  J  e.  (TopOn `  CC )
1615toponunii 16686 . . . . . . . . . . . . . . . . . . . 20  |-  CC  =  U. J
1716cldss 16782 . . . . . . . . . . . . . . . . . . 19  |-  ( X  e.  ( Clsd `  J
)  ->  X  C_  CC )
1817adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  CC )
1918adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  X  C_  CC )
20 simprr 733 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( F `  u )  e.  X )
2119, 20sseldd 3194 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( F `  u )  e.  CC )
2221abscld 11934 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( F `  u ) )  e.  RR )
23 simplrl 736 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  R  e.  RR )
24 simprl 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  e.  ( RR  X.  RR ) )
25 f1ocnvfv1 5808 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : ( RR 
X.  RR ) -1-1-onto-> CC  /\  u  e.  ( RR  X.  RR ) )  -> 
( `' F `  ( F `  u ) )  =  u )
265, 24, 25sylancr 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( `' F `  ( F `
 u ) )  =  u )
27 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( F `  u )  ->  (
Re `  z )  =  ( Re `  ( F `  u ) ) )
28 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( F `  u )  ->  (
Im `  z )  =  ( Im `  ( F `  u ) ) )
2927, 28opeq12d 3820 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  ( F `  u )  ->  <. (
Re `  z ) ,  ( Im `  z ) >.  =  <. ( Re `  ( F `
 u ) ) ,  ( Im `  ( F `  u ) ) >. )
304cnrecnv 11666 . . . . . . . . . . . . . . . . . . . . . 22  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
31 opex 4253 . . . . . . . . . . . . . . . . . . . . . 22  |-  <. (
Re `  ( F `  u ) ) ,  ( Im `  ( F `  u )
) >.  e.  _V
3229, 30, 31fvmpt 5618 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  u )  e.  CC  ->  ( `' F `  ( F `
 u ) )  =  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)
3321, 32syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( `' F `  ( F `
 u ) )  =  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)
3426, 33eqtr3d 2330 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  =  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)
3534fveq2d 5545 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  =  ( 1st `  <. ( Re `  ( F `
 u ) ) ,  ( Im `  ( F `  u ) ) >. ) )
36 fvex 5555 . . . . . . . . . . . . . . . . . . 19  |-  ( Re
`  ( F `  u ) )  e. 
_V
37 fvex 5555 . . . . . . . . . . . . . . . . . . 19  |-  ( Im
`  ( F `  u ) )  e. 
_V
3836, 37op1st 6144 . . . . . . . . . . . . . . . . . 18  |-  ( 1st `  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)  =  ( Re
`  ( F `  u ) )
3935, 38syl6eq 2344 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  =  ( Re `  ( F `  u )
) )
4039fveq2d 5545 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  =  ( abs `  ( Re
`  ( F `  u ) ) ) )
41 absrele 11809 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  u )  e.  CC  ->  ( abs `  ( Re `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
4221, 41syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( Re `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
4340, 42eqbrtrd 4059 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  <_  ( abs `  ( F `  u ) ) )
44 simplrr 737 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  A. z  e.  X  ( abs `  z )  <_  R
)
45 fveq2 5541 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( F `  u )  ->  ( abs `  z )  =  ( abs `  ( F `  u )
) )
4645breq1d 4049 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( F `  u )  ->  (
( abs `  z
)  <_  R  <->  ( abs `  ( F `  u
) )  <_  R
) )
4746rspcv 2893 . . . . . . . . . . . . . . . 16  |-  ( ( F `  u )  e.  X  ->  ( A. z  e.  X  ( abs `  z )  <_  R  ->  ( abs `  ( F `  u ) )  <_  R ) )
4820, 44, 47sylc 56 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( F `  u ) )  <_  R )
4914, 22, 23, 43, 48letrd 8989 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  <_  R
)
5012, 23absled 11929 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( abs `  ( 1st `  u ) )  <_  R  <->  ( -u R  <_  ( 1st `  u
)  /\  ( 1st `  u )  <_  R
) ) )
5149, 50mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( -u R  <_  ( 1st `  u )  /\  ( 1st `  u )  <_  R ) )
5251simpld 445 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  -u R  <_  ( 1st `  u
) )
5351simprd 449 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  <_  R )
54 renegcl 9126 . . . . . . . . . . . . . 14  |-  ( R  e.  RR  ->  -u R  e.  RR )
5523, 54syl 15 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  -u R  e.  RR )
56 elicc2 10731 . . . . . . . . . . . . 13  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( ( 1st `  u )  e.  (
-u R [,] R
)  <->  ( ( 1st `  u )  e.  RR  /\  -u R  <_  ( 1st `  u )  /\  ( 1st `  u )  <_  R ) ) )
5755, 23, 56syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( 1st `  u
)  e.  ( -u R [,] R )  <->  ( ( 1st `  u )  e.  RR  /\  -u R  <_  ( 1st `  u
)  /\  ( 1st `  u )  <_  R
) ) )
5812, 52, 53, 57mpbir3and 1135 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  e.  ( -u R [,] R ) )
59 xp2nd 6166 . . . . . . . . . . . . 13  |-  ( u  e.  ( RR  X.  RR )  ->  ( 2nd `  u )  e.  RR )
6059ad2antrl 708 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  e.  RR )
6160recnd 8877 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  e.  CC )
6261abscld 11934 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  e.  RR )
6334fveq2d 5545 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  =  ( 2nd `  <. ( Re `  ( F `
 u ) ) ,  ( Im `  ( F `  u ) ) >. ) )
6436, 37op2nd 6145 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)  =  ( Im
`  ( F `  u ) )
6563, 64syl6eq 2344 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  =  ( Im `  ( F `  u )
) )
6665fveq2d 5545 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  =  ( abs `  ( Im
`  ( F `  u ) ) ) )
67 absimle 11810 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  u )  e.  CC  ->  ( abs `  ( Im `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
6821, 67syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( Im `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
6966, 68eqbrtrd 4059 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  <_  ( abs `  ( F `  u ) ) )
7062, 22, 23, 69, 48letrd 8989 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  <_  R
)
7160, 23absled 11929 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( abs `  ( 2nd `  u ) )  <_  R  <->  ( -u R  <_  ( 2nd `  u
)  /\  ( 2nd `  u )  <_  R
) ) )
7270, 71mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( -u R  <_  ( 2nd `  u )  /\  ( 2nd `  u )  <_  R ) )
7372simpld 445 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  -u R  <_  ( 2nd `  u
) )
7472simprd 449 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  <_  R )
75 elicc2 10731 . . . . . . . . . . . . 13  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( ( 2nd `  u )  e.  (
-u R [,] R
)  <->  ( ( 2nd `  u )  e.  RR  /\  -u R  <_  ( 2nd `  u )  /\  ( 2nd `  u )  <_  R ) ) )
7655, 23, 75syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( 2nd `  u
)  e.  ( -u R [,] R )  <->  ( ( 2nd `  u )  e.  RR  /\  -u R  <_  ( 2nd `  u
)  /\  ( 2nd `  u )  <_  R
) ) )
7760, 73, 74, 76mpbir3and 1135 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  e.  ( -u R [,] R ) )
78 opelxpi 4737 . . . . . . . . . . 11  |-  ( ( ( 1st `  u
)  e.  ( -u R [,] R )  /\  ( 2nd `  u )  e.  ( -u R [,] R ) )  ->  <. ( 1st `  u
) ,  ( 2nd `  u ) >.  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )
7958, 77, 78syl2anc 642 . . . . . . . . . 10  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  <. ( 1st `  u ) ,  ( 2nd `  u
) >.  e.  ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) )
8010, 79eqeltrd 2370 . . . . . . . . 9  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )
8180ex 423 . . . . . . . 8  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
)  ->  u  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
828, 81syl5bi 208 . . . . . . 7  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( u  e.  ( `' F " X )  ->  u  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
8382ssrdv 3198 . . . . . 6  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( `' F " X )  C_  (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )
84 f1ofun 5490 . . . . . . . 8  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  Fun  F )
855, 84ax-mp 8 . . . . . . 7  |-  Fun  F
86 f1ofo 5495 . . . . . . . . 9  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  F :
( RR  X.  RR ) -onto-> CC )
87 forn 5470 . . . . . . . . 9  |-  ( F : ( RR  X.  RR ) -onto-> CC  ->  ran  F  =  CC )
885, 86, 87mp2b 9 . . . . . . . 8  |-  ran  F  =  CC
8918, 88syl6sseqr 3238 . . . . . . 7  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  ran  F )
90 funimass1 5341 . . . . . . 7  |-  ( ( Fun  F  /\  X  C_ 
ran  F )  -> 
( ( `' F " X )  C_  (
( -u R [,] R
)  X.  ( -u R [,] R ) )  ->  X  C_  ( F " ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) ) )
9185, 89, 90sylancr 644 . . . . . 6  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( `' F " X )  C_  (
( -u R [,] R
)  X.  ( -u R [,] R ) )  ->  X  C_  ( F " ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) ) )
9283, 91mpd 14 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  ( F "
( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
93 cnheibor.5 . . . . 5  |-  Y  =  ( F " (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )
9492, 93syl6sseqr 3238 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  Y )
95 eqid 2296 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
964, 95, 1cnrehmeo 18467 . . . . . . 7  |-  F  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
)  Homeo  J )
97 imaexg 5042 . . . . . . 7  |-  ( F  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Homeo  J )  -> 
( F " (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )  e.  _V )
9896, 97ax-mp 8 . . . . . 6  |-  ( F
" ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  e.  _V
9993, 98eqeltri 2366 . . . . 5  |-  Y  e. 
_V
10099a1i 10 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  Y  e.  _V )
101 restabs 16912 . . . 4  |-  ( ( J  e.  Top  /\  X  C_  Y  /\  Y  e.  _V )  ->  (
( Jt  Y )t  X )  =  ( Jt  X ) )
1023, 94, 100, 101syl3anc 1182 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( Jt  Y )t  X )  =  ( Jt  X ) )
103 cnheibor.3 . . 3  |-  T  =  ( Jt  X )
104102, 103syl6eqr 2346 . 2  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( Jt  Y )t  X )  =  T )
10593oveq2i 5885 . . . . 5  |-  ( Jt  Y )  =  ( Jt  ( F " ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) ) )
106 ishmeo 17466 . . . . . . . 8  |-  ( F  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Homeo  J )  <->  ( F  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
)  Cn  J )  /\  `' F  e.  ( J  Cn  (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) ) ) )
10796, 106mpbi 199 . . . . . . 7  |-  ( F  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J )  /\  `' F  e.  ( J  Cn  (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) ) )
108107simpli 444 . . . . . 6  |-  F  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
)  Cn  J )
109 iccssre 10747 . . . . . . . . . . 11  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( -u R [,] R )  C_  RR )
11054, 109mpancom 650 . . . . . . . . . 10  |-  ( R  e.  RR  ->  ( -u R [,] R ) 
C_  RR )
1111, 95rerest 18326 . . . . . . . . . 10  |-  ( (
-u R [,] R
)  C_  RR  ->  ( Jt  ( -u R [,] R ) )  =  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) )
112110, 111syl 15 . . . . . . . . 9  |-  ( R  e.  RR  ->  ( Jt  ( -u R [,] R
) )  =  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) )
113112, 112oveq12d 5892 . . . . . . . 8  |-  ( R  e.  RR  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  =  ( ( (
topGen `  ran  (,) )t  ( -u R [,] R ) )  tX  ( (
topGen `  ran  (,) )t  ( -u R [,] R ) ) ) )
114 retop 18286 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  e.  Top
115 ovex 5899 . . . . . . . . 9  |-  ( -u R [,] R )  e. 
_V
116 txrest 17341 . . . . . . . . 9  |-  ( ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( topGen `  ran  (,) )  e.  Top )  /\  (
( -u R [,] R
)  e.  _V  /\  ( -u R [,] R
)  e.  _V )
)  ->  ( (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  =  ( ( ( topGen `  ran  (,) )t  ( -u R [,] R ) )  tX  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) ) )
117114, 114, 115, 115, 116mp4an 654 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  =  ( ( ( topGen `  ran  (,) )t  ( -u R [,] R ) )  tX  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) )
118113, 117syl6eqr 2346 . . . . . . 7  |-  ( R  e.  RR  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  =  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
119 eqid 2296 . . . . . . . . . . 11  |-  ( (
topGen `  ran  (,) )t  ( -u R [,] R ) )  =  ( (
topGen `  ran  (,) )t  ( -u R [,] R ) )
12095, 119icccmp 18346 . . . . . . . . . 10  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( ( topGen ` 
ran  (,) )t  ( -u R [,] R ) )  e. 
Comp )
12154, 120mpancom 650 . . . . . . . . 9  |-  ( R  e.  RR  ->  (
( topGen `  ran  (,) )t  ( -u R [,] R ) )  e.  Comp )
122112, 121eqeltrd 2370 . . . . . . . 8  |-  ( R  e.  RR  ->  ( Jt  ( -u R [,] R
) )  e.  Comp )
123 txcmp 17353 . . . . . . . 8  |-  ( ( ( Jt  ( -u R [,] R ) )  e. 
Comp  /\  ( Jt  ( -u R [,] R ) )  e.  Comp )  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  e.  Comp )
124122, 122, 123syl2anc 642 . . . . . . 7  |-  ( R  e.  RR  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  e.  Comp )
125118, 124eqeltrrd 2371 . . . . . 6  |-  ( R  e.  RR  ->  (
( ( topGen `  ran  (,) )  tX  ( topGen ` 
ran  (,) ) )t  ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) )  e.  Comp )
126 imacmp 17140 . . . . . 6  |-  ( ( F  e.  ( ( ( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J )  /\  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  e.  Comp )  ->  ( Jt  ( F
" ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )  e.  Comp )
127108, 125, 126sylancr 644 . . . . 5  |-  ( R  e.  RR  ->  ( Jt  ( F " ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) ) )  e.  Comp )
128105, 127syl5eqel 2380 . . . 4  |-  ( R  e.  RR  ->  ( Jt  Y )  e.  Comp )
129128ad2antrl 708 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( Jt  Y )  e.  Comp )
130 imassrn 5041 . . . . . . 7  |-  ( F
" ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) 
C_  ran  F
13193, 130eqsstri 3221 . . . . . 6  |-  Y  C_  ran  F
132 f1of 5488 . . . . . . 7  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  F :
( RR  X.  RR )
--> CC )
133 frn 5411 . . . . . . 7  |-  ( F : ( RR  X.  RR ) --> CC  ->  ran  F 
C_  CC )
1345, 132, 133mp2b 9 . . . . . 6  |-  ran  F  C_  CC
135131, 134sstri 3201 . . . . 5  |-  Y  C_  CC
136135a1i 10 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  Y  C_  CC )
137 simpl 443 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  e.  ( Clsd `  J ) )
13816restcldi 16920 . . . 4  |-  ( ( Y  C_  CC  /\  X  e.  ( Clsd `  J
)  /\  X  C_  Y
)  ->  X  e.  ( Clsd `  ( Jt  Y
) ) )
139136, 137, 94, 138syl3anc 1182 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  e.  ( Clsd `  ( Jt  Y ) ) )
140 cmpcld 17145 . . 3  |-  ( ( ( Jt  Y )  e.  Comp  /\  X  e.  ( Clsd `  ( Jt  Y ) ) )  ->  ( ( Jt  Y )t  X )  e.  Comp )
141129, 139, 140syl2anc 642 . 2  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( Jt  Y )t  X )  e.  Comp )
142104, 141eqeltrrd 2371 1  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  T  e.  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    C_ wss 3165   <.cop 3656   class class class wbr 4039    X. cxp 4703   `'ccnv 4704   ran crn 4706   "cima 4708   Fun wfun 5265    Fn wfn 5266   -->wf 5267   -onto->wfo 5269   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1stc1st 6136   2ndc2nd 6137   CCcc 8751   RRcr 8752   _ici 8755    + caddc 8756    x. cmul 8758    <_ cle 8884   -ucneg 9054   (,)cioo 10672   [,]cicc 10675   Recre 11598   Imcim 11599   abscabs 11735   ↾t crest 13341   TopOpenctopn 13342   topGenctg 13358  ℂfldccnfld 16393   Topctop 16647   Clsdccld 16769    Cn ccn 16970   Compccmp 17129    tX ctx 17271    Homeo chmeo 17460
This theorem is referenced by:  cnheibor  18469
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-cn 16973  df-cnp 16974  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398
  Copyright terms: Public domain W3C validator