MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnindis Unicode version

Theorem cnindis 17020
Description: Every function is continuous when the codomain is indiscrete (trivial). (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnindis  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( J  Cn  { (/) ,  A } )  =  ( A  ^m  X ) )

Proof of Theorem cnindis
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 3660 . . . . . . 7  |-  ( x  e.  { (/) ,  A }  ->  ( x  =  (/)  \/  x  =  A ) )
2 topontop 16664 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
32ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  J  e.  Top )
4 0opn 16650 . . . . . . . . . 10  |-  ( J  e.  Top  ->  (/)  e.  J
)
53, 4syl 15 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  (/) 
e.  J )
6 imaeq2 5008 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( `' f " x )  =  ( `' f
" (/) ) )
7 ima0 5030 . . . . . . . . . . 11  |-  ( `' f " (/) )  =  (/)
86, 7syl6eq 2331 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( `' f " x )  =  (/) )
98eleq1d 2349 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( `' f " x
)  e.  J  <->  (/)  e.  J
) )
105, 9syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( x  =  (/)  ->  ( `' f "
x )  e.  J
) )
11 fimacnv 5657 . . . . . . . . . . 11  |-  ( f : X --> A  -> 
( `' f " A )  =  X )
1211adantl 452 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( `' f " A )  =  X )
13 toponmax 16666 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
1413ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  X  e.  J )
1512, 14eqeltrd 2357 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( `' f " A )  e.  J
)
16 imaeq2 5008 . . . . . . . . . 10  |-  ( x  =  A  ->  ( `' f " x
)  =  ( `' f " A ) )
1716eleq1d 2349 . . . . . . . . 9  |-  ( x  =  A  ->  (
( `' f "
x )  e.  J  <->  ( `' f " A
)  e.  J ) )
1815, 17syl5ibrcom 213 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( x  =  A  ->  ( `' f
" x )  e.  J ) )
1910, 18jaod 369 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( ( x  =  (/)  \/  x  =  A )  ->  ( `' f " x )  e.  J ) )
201, 19syl5 28 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( x  e.  { (/)
,  A }  ->  ( `' f " x
)  e.  J ) )
2120ralrimiv 2625 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  A. x  e.  { (/) ,  A }  ( `' f " x )  e.  J )
2221ex 423 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f : X --> A  ->  A. x  e.  { (/) ,  A }  ( `' f " x )  e.  J ) )
2322pm4.71d 615 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f : X --> A  <->  ( f : X --> A  /\  A. x  e.  { (/) ,  A }  ( `' f
" x )  e.  J ) ) )
24 id 19 . . . 4  |-  ( A  e.  V  ->  A  e.  V )
25 elmapg 6785 . . . 4  |-  ( ( A  e.  V  /\  X  e.  J )  ->  ( f  e.  ( A  ^m  X )  <-> 
f : X --> A ) )
2624, 13, 25syl2anr 464 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f  e.  ( A  ^m  X )  <->  f : X
--> A ) )
27 indistopon 16738 . . . 4  |-  ( A  e.  V  ->  { (/) ,  A }  e.  (TopOn `  A ) )
28 iscn 16965 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  { (/)
,  A }  e.  (TopOn `  A ) )  ->  ( f  e.  ( J  Cn  { (/)
,  A } )  <-> 
( f : X --> A  /\  A. x  e. 
{ (/) ,  A } 
( `' f "
x )  e.  J
) ) )
2927, 28sylan2 460 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f  e.  ( J  Cn  { (/) ,  A } )  <->  ( f : X --> A  /\  A. x  e.  { (/) ,  A }  ( `' f
" x )  e.  J ) ) )
3023, 26, 293bitr4rd 277 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f  e.  ( J  Cn  { (/) ,  A } )  <->  f  e.  ( A  ^m  X ) ) )
3130eqrdv 2281 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( J  Cn  { (/) ,  A } )  =  ( A  ^m  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   (/)c0 3455   {cpr 3641   `'ccnv 4688   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   Topctop 16631  TopOnctopon 16632    Cn ccn 16954
This theorem is referenced by:  indishmph  17489  indistgp  17783  indispcon  23765  mapudiscn  25528
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-top 16636  df-topon 16639  df-cn 16957
  Copyright terms: Public domain W3C validator