MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmetdval Unicode version

Theorem cnmetdval 18296
Description: Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypothesis
Ref Expression
cnmetdval.1  |-  D  =  ( abs  o.  -  )
Assertion
Ref Expression
cnmetdval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )

Proof of Theorem cnmetdval
StepHypRef Expression
1 subf 9069 . . 3  |-  -  :
( CC  X.  CC )
--> CC
2 opelxpi 4737 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
<. A ,  B >.  e.  ( CC  X.  CC ) )
3 fvco3 5612 . . 3  |-  ( (  -  : ( CC 
X.  CC ) --> CC 
/\  <. A ,  B >.  e.  ( CC  X.  CC ) )  ->  (
( abs  o.  -  ) `  <. A ,  B >. )  =  ( abs `  (  -  `  <. A ,  B >. )
) )
41, 2, 3sylancr 644 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs  o.  -  ) `  <. A ,  B >. )  =  ( abs `  (  -  `  <. A ,  B >. ) ) )
5 df-ov 5877 . . 3  |-  ( A D B )  =  ( D `  <. A ,  B >. )
6 cnmetdval.1 . . . 4  |-  D  =  ( abs  o.  -  )
76fveq1i 5542 . . 3  |-  ( D `
 <. A ,  B >. )  =  ( ( abs  o.  -  ) `  <. A ,  B >. )
85, 7eqtri 2316 . 2  |-  ( A D B )  =  ( ( abs  o.  -  ) `  <. A ,  B >. )
9 df-ov 5877 . . 3  |-  ( A  -  B )  =  (  -  `  <. A ,  B >. )
109fveq2i 5544 . 2  |-  ( abs `  ( A  -  B
) )  =  ( abs `  (  -  ` 
<. A ,  B >. ) )
114, 8, 103eqtr4g 2353 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A D B )  =  ( abs `  ( A  -  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   <.cop 3656    X. cxp 4703    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751    - cmin 9053   abscabs 11735
This theorem is referenced by:  cnmet  18297  cnbl0  18299  cnblcld  18300  cnfldnm  18304  remetdval  18311  blcvx  18320  recld2  18336  zdis  18338  reperflem  18339  addcnlem  18384  divcn  18388  cncfmet  18428  cnheibor  18469  cnllycmp  18470  ipcn  18689  lmclim  18744  cncmet  18760  ovolfsval  18846  ellimc3  19245  lhop1lem  19376  ftc1lem6  19404  ulmdvlem1  19793  psercn  19818  pserdvlem2  19820  abelthlem2  19824  abelthlem3  19825  abelthlem5  19827  abelthlem7  19830  abelth  19833  dvlog2lem  20015  efopn  20021  logtayl  20023  logtayl2  20025  cxpcn3  20104  rlimcnp  20276  xrlimcnp  20279  efrlim  20280  ftalem3  20328  smcnlem  21286  hhcnf  22501  tpr2rico  23311  ftc1cnnc  25025  cntotbnd  26623  iccbnd  26667  stirlinglem5  27930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-ltxr 8888  df-sub 9055
  Copyright terms: Public domain W3C validator