Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1st Structured version   Unicode version

Theorem cnmpt1st 17692
 Description: The projection onto the first coordinate is continuous. (Contributed by Mario Carneiro, 6-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j TopOn
cnmpt21.k TopOn
Assertion
Ref Expression
cnmpt1st
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)   (,)

Proof of Theorem cnmpt1st
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 fo1st 6358 . . . . . 6
2 fofn 5647 . . . . . 6
31, 2ax-mp 8 . . . . 5
4 ssv 3360 . . . . 5
5 fnssres 5550 . . . . 5
63, 4, 5mp2an 654 . . . 4
7 dffn5 5764 . . . 4
86, 7mpbi 200 . . 3
9 fvres 5737 . . . 4
109mpteq2ia 4283 . . 3
11 vex 2951 . . . . 5
12 vex 2951 . . . . 5
1311, 12op1std 6349 . . . 4
1413mpt2mpt 6157 . . 3
158, 10, 143eqtri 2459 . 2
16 cnmpt21.j . . 3 TopOn
17 cnmpt21.k . . 3 TopOn
18 tx1cn 17633 . . 3 TopOn TopOn
1916, 17, 18syl2anc 643 . 2
2015, 19syl5eqelr 2520 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1652   wcel 1725  cvv 2948   wss 3312   cmpt 4258   cxp 4868   cres 4872   wfn 5441  wfo 5444  cfv 5446  (class class class)co 6073   cmpt2 6075  c1st 6339  TopOnctopon 16951   ccn 17280   ctx 17584 This theorem is referenced by:  cnmptcom  17702  xkofvcn  17708  cnmptk2  17710  txhmeo  17827  txswaphmeo  17829  ptunhmeo  17832  xkohmeo  17839  tgpsubcn  18112  istgp2  18113  oppgtmd  18119  prdstmdd  18145  dvrcn  18205  divcn  18890  cnrehmeo  18970  htpycom  18993  htpyid  18994  htpyco1  18995  htpycc  18997  reparphti  19014  pcocn  19034  pcohtpylem  19036  pcopt  19039  pcopt2  19040  pcoass  19041  pcorevlem  19043  cxpcn  20621  vmcn  22187  dipcn  22211  mndpluscn  24304  cvxscon  24922  cvmlift2lem12  24993 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fo 5452  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-map 7012  df-topgen 13659  df-top 16955  df-bases 16957  df-topon 16958  df-cn 17283  df-tx 17586
 Copyright terms: Public domain W3C validator