MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1t Structured version   Unicode version

Theorem cnmpt1t 17728
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt1t.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
Assertion
Ref Expression
cnmpt1t  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Distinct variable groups:    ph, x    x, J    x, X    x, K    x, L
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem cnmpt1t
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 toponuni 17023 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
3 mpteq1 4314 . . . 4  |-  ( X  =  U. J  -> 
( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
41, 2, 33syl 19 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. ) )
5 simpr 449 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
6 cnmpt11.a . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
7 cntop2 17336 . . . . . . . . . . 11  |-  ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  ->  K  e.  Top )
86, 7syl 16 . . . . . . . . . 10  |-  ( ph  ->  K  e.  Top )
9 eqid 2442 . . . . . . . . . . 11  |-  U. K  =  U. K
109toptopon 17029 . . . . . . . . . 10  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
118, 10sylib 190 . . . . . . . . 9  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
12 cnf2 17344 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  ( x  e.  X  |->  A )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  A ) : X --> U. K
)
131, 11, 6, 12syl3anc 1185 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> U. K )
14 eqid 2442 . . . . . . . . 9  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
1514fmpt 5919 . . . . . . . 8  |-  ( A. x  e.  X  A  e.  U. K  <->  ( x  e.  X  |->  A ) : X --> U. K
)
1613, 15sylibr 205 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A  e.  U. K )
1716r19.21bi 2810 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  U. K )
1814fvmpt2 5841 . . . . . 6  |-  ( ( x  e.  X  /\  A  e.  U. K )  ->  ( ( x  e.  X  |->  A ) `
 x )  =  A )
195, 17, 18syl2anc 644 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  A ) `  x
)  =  A )
20 cnmpt1t.b . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  L ) )
21 cntop2 17336 . . . . . . . . . . 11  |-  ( ( x  e.  X  |->  B )  e.  ( J  Cn  L )  ->  L  e.  Top )
2220, 21syl 16 . . . . . . . . . 10  |-  ( ph  ->  L  e.  Top )
23 eqid 2442 . . . . . . . . . . 11  |-  U. L  =  U. L
2423toptopon 17029 . . . . . . . . . 10  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
2522, 24sylib 190 . . . . . . . . 9  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
26 cnf2 17344 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  X  |->  B ) : X --> U. L
)
271, 25, 20, 26syl3anc 1185 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> U. L )
28 eqid 2442 . . . . . . . . 9  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
2928fmpt 5919 . . . . . . . 8  |-  ( A. x  e.  X  B  e.  U. L  <->  ( x  e.  X  |->  B ) : X --> U. L
)
3027, 29sylibr 205 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  B  e.  U. L )
3130r19.21bi 2810 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  U. L )
3228fvmpt2 5841 . . . . . 6  |-  ( ( x  e.  X  /\  B  e.  U. L )  ->  ( ( x  e.  X  |->  B ) `
 x )  =  B )
335, 31, 32syl2anc 644 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  |->  B ) `  x
)  =  B )
3419, 33opeq12d 4016 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. A ,  B >. )
3534mpteq2dva 4320 . . 3  |-  ( ph  ->  ( x  e.  X  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
364, 35eqtr3d 2476 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  =  ( x  e.  X  |->  <. A ,  B >. ) )
37 eqid 2442 . . . 4  |-  U. J  =  U. J
38 nfcv 2578 . . . . 5  |-  F/_ y <. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >.
39 nffvmpt1 5765 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  A ) `  y )
40 nffvmpt1 5765 . . . . . 6  |-  F/_ x
( ( x  e.  X  |->  B ) `  y )
4139, 40nfop 4024 . . . . 5  |-  F/_ x <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >.
42 fveq2 5757 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  A ) `  x
)  =  ( ( x  e.  X  |->  A ) `  y ) )
43 fveq2 5757 . . . . . 6  |-  ( x  =  y  ->  (
( x  e.  X  |->  B ) `  x
)  =  ( ( x  e.  X  |->  B ) `  y ) )
4442, 43opeq12d 4016 . . . . 5  |-  ( x  =  y  ->  <. (
( x  e.  X  |->  A ) `  x
) ,  ( ( x  e.  X  |->  B ) `  x )
>.  =  <. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `
 y ) >.
)
4538, 41, 44cbvmpt 4324 . . . 4  |-  ( x  e.  U. J  |->  <.
( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  =  ( y  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  y ) ,  ( ( x  e.  X  |->  B ) `  y
) >. )
4637, 45txcnmpt 17687 . . 3  |-  ( ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  L
) )  ->  (
x  e.  U. J  |-> 
<. ( ( x  e.  X  |->  A ) `  x ) ,  ( ( x  e.  X  |->  B ) `  x
) >. )  e.  ( J  Cn  ( K 
tX  L ) ) )
476, 20, 46syl2anc 644 . 2  |-  ( ph  ->  ( x  e.  U. J  |->  <. ( ( x  e.  X  |->  A ) `
 x ) ,  ( ( x  e.  X  |->  B ) `  x ) >. )  e.  ( J  Cn  ( K  tX  L ) ) )
4836, 47eqeltrrd 2517 1  |-  ( ph  ->  ( x  e.  X  |-> 
<. A ,  B >. )  e.  ( J  Cn  ( K  tX  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1727   A.wral 2711   <.cop 3841   U.cuni 4039    e. cmpt 4291   -->wf 5479   ` cfv 5483  (class class class)co 6110   Topctop 16989  TopOnctopon 16990    Cn ccn 17319    tX ctx 17623
This theorem is referenced by:  cnmpt12f  17729  xkoinjcn  17750  txcon  17752  imasnopn  17753  imasncld  17754  imasncls  17755  ptunhmeo  17871  xkohmeo  17878  cnrehmeo  19009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-map 7049  df-topgen 13698  df-top 16994  df-bases 16996  df-topon 16997  df-cn 17322  df-tx 17625
  Copyright terms: Public domain W3C validator