MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt21f Unicode version

Theorem cnmpt21f 17366
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt21f.f  |-  ( ph  ->  F  e.  ( L  Cn  M ) )
Assertion
Ref Expression
cnmpt21f  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( F `  A
) )  e.  ( ( J  tX  K
)  Cn  M ) )
Distinct variable groups:    x, y, F    x, L, y    ph, x, y    x, X, y    x, M, y    x, Y, y
Allowed substitution hints:    A( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt21f
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmpt21.k . 2  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 cnmpt21.a . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
4 cnmpt21f.f . . . 4  |-  ( ph  ->  F  e.  ( L  Cn  M ) )
5 cntop1 16970 . . . 4  |-  ( F  e.  ( L  Cn  M )  ->  L  e.  Top )
64, 5syl 15 . . 3  |-  ( ph  ->  L  e.  Top )
7 eqid 2283 . . . 4  |-  U. L  =  U. L
87toptopon 16671 . . 3  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
96, 8sylib 188 . 2  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
10 eqid 2283 . . . . . 6  |-  U. M  =  U. M
117, 10cnf 16976 . . . . 5  |-  ( F  e.  ( L  Cn  M )  ->  F : U. L --> U. M
)
124, 11syl 15 . . . 4  |-  ( ph  ->  F : U. L --> U. M )
1312feqmptd 5575 . . 3  |-  ( ph  ->  F  =  ( z  e.  U. L  |->  ( F `  z ) ) )
1413, 4eqeltrrd 2358 . 2  |-  ( ph  ->  ( z  e.  U. L  |->  ( F `  z ) )  e.  ( L  Cn  M
) )
15 fveq2 5525 . 2  |-  ( z  =  A  ->  ( F `  z )  =  ( F `  A ) )
161, 2, 3, 9, 14, 15cnmpt21 17365 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( F `  A
) )  e.  ( ( J  tX  K
)  Cn  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684   U.cuni 3827    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   Topctop 16631  TopOnctopon 16632    Cn ccn 16954    tX ctx 17255
This theorem is referenced by:  cnmpt22  17368  cnmptk2  17380  txhmeo  17494  tgpsubcn  17773  istgp2  17774  dvrcn  17866  htpyid  18475  htpyco1  18476  reparphti  18495  pcocn  18515  pcorevlem  18524  cxpcn  20085  dipcn  21296  mndpluscn  23299  cvxscon  23774  cvmlift2lem6  23839  cvmlift2lem12  23845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-topgen 13344  df-top 16636  df-bases 16638  df-topon 16639  df-cn 16957  df-tx 17257
  Copyright terms: Public domain W3C validator