MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt22 Unicode version

Theorem cnmpt22 17384
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt2t.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
cnmpt22.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmpt22.m  |-  ( ph  ->  M  e.  (TopOn `  W ) )
cnmpt22.c  |-  ( ph  ->  ( z  e.  Z ,  w  e.  W  |->  C )  e.  ( ( L  tX  M
)  Cn  N ) )
cnmpt22.d  |-  ( ( z  =  A  /\  w  =  B )  ->  C  =  D )
Assertion
Ref Expression
cnmpt22  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  D )  e.  ( ( J  tX  K
)  Cn  N ) )
Distinct variable groups:    z, w, A    w, B    w, D, z    z, J    x, w, y, z, L    ph, x, y, z    w, X, x, y, z    w, M, x, y, z    w, N, x, y, z    w, Y, x, y, z    z, K    w, W, x, y, z    w, Z, x, y, z    z, B   
x, C, y
Allowed substitution hints:    ph( w)    A( x, y)    B( x, y)    C( z, w)    D( x, y)    J( x, y, w)    K( x, y, w)

Proof of Theorem cnmpt22
StepHypRef Expression
1 df-ov 5877 . . . 4  |-  ( A ( z  e.  Z ,  w  e.  W  |->  C ) B )  =  ( ( z  e.  Z ,  w  e.  W  |->  C ) `
 <. A ,  B >. )
2 cnmpt21.j . . . . . . . . . 10  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 cnmpt21.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
4 txtopon 17302 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
52, 3, 4syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
6 cnmpt22.l . . . . . . . . 9  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
7 cnmpt21.a . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
8 cnf2 16995 . . . . . . . . 9  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  (TopOn `  Z )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> Z )
95, 6, 7, 8syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> Z )
10 eqid 2296 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
1110fmpt2 6207 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  Z  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> Z )
129, 11sylibr 203 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  A  e.  Z )
13 rsp2 2618 . . . . . . 7  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  Z  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  A  e.  Z ) )
1412, 13syl 15 . . . . . 6  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  A  e.  Z ) )
15143impib 1149 . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  A  e.  Z )
16 cnmpt22.m . . . . . . . . 9  |-  ( ph  ->  M  e.  (TopOn `  W ) )
17 cnmpt2t.b . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
18 cnf2 16995 . . . . . . . . 9  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  M  e.  (TopOn `  W )  /\  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )  ->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y
) --> W )
195, 16, 17, 18syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y ) --> W )
20 eqid 2296 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  B )  =  ( x  e.  X ,  y  e.  Y  |->  B )
2120fmpt2 6207 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  B  e.  W  <->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y
) --> W )
2219, 21sylibr 203 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  B  e.  W )
23 rsp2 2618 . . . . . . 7  |-  ( A. x  e.  X  A. y  e.  Y  B  e.  W  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  B  e.  W ) )
2422, 23syl 15 . . . . . 6  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  B  e.  W ) )
25243impib 1149 . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  B  e.  W )
2615, 25jca 518 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( A  e.  Z  /\  B  e.  W ) )
27 txtopon 17302 . . . . . . . . . . 11  |-  ( ( L  e.  (TopOn `  Z )  /\  M  e.  (TopOn `  W )
)  ->  ( L  tX  M )  e.  (TopOn `  ( Z  X.  W
) ) )
286, 16, 27syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( L  tX  M
)  e.  (TopOn `  ( Z  X.  W
) ) )
29 cnmpt22.c . . . . . . . . . . . 12  |-  ( ph  ->  ( z  e.  Z ,  w  e.  W  |->  C )  e.  ( ( L  tX  M
)  Cn  N ) )
30 cntop2 16987 . . . . . . . . . . . 12  |-  ( ( z  e.  Z ,  w  e.  W  |->  C )  e.  ( ( L  tX  M )  Cn  N )  ->  N  e.  Top )
3129, 30syl 15 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  Top )
32 eqid 2296 . . . . . . . . . . . 12  |-  U. N  =  U. N
3332toptopon 16687 . . . . . . . . . . 11  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
3431, 33sylib 188 . . . . . . . . . 10  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
35 cnf2 16995 . . . . . . . . . 10  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( Z  X.  W
) )  /\  N  e.  (TopOn `  U. N )  /\  ( z  e.  Z ,  w  e.  W  |->  C )  e.  ( ( L  tX  M )  Cn  N
) )  ->  (
z  e.  Z ,  w  e.  W  |->  C ) : ( Z  X.  W ) --> U. N )
3628, 34, 29, 35syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( z  e.  Z ,  w  e.  W  |->  C ) : ( Z  X.  W ) --> U. N )
37 eqid 2296 . . . . . . . . . 10  |-  ( z  e.  Z ,  w  e.  W  |->  C )  =  ( z  e.  Z ,  w  e.  W  |->  C )
3837fmpt2 6207 . . . . . . . . 9  |-  ( A. z  e.  Z  A. w  e.  W  C  e.  U. N  <->  ( z  e.  Z ,  w  e.  W  |->  C ) : ( Z  X.  W
) --> U. N )
3936, 38sylibr 203 . . . . . . . 8  |-  ( ph  ->  A. z  e.  Z  A. w  e.  W  C  e.  U. N )
40 r2al 2593 . . . . . . . 8  |-  ( A. z  e.  Z  A. w  e.  W  C  e.  U. N  <->  A. z A. w ( ( z  e.  Z  /\  w  e.  W )  ->  C  e.  U. N ) )
4139, 40sylib 188 . . . . . . 7  |-  ( ph  ->  A. z A. w
( ( z  e.  Z  /\  w  e.  W )  ->  C  e.  U. N ) )
42413ad2ant1 976 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  A. z A. w ( ( z  e.  Z  /\  w  e.  W )  ->  C  e.  U. N ) )
43 eleq1 2356 . . . . . . . . 9  |-  ( z  =  A  ->  (
z  e.  Z  <->  A  e.  Z ) )
44 eleq1 2356 . . . . . . . . 9  |-  ( w  =  B  ->  (
w  e.  W  <->  B  e.  W ) )
4543, 44bi2anan9 843 . . . . . . . 8  |-  ( ( z  =  A  /\  w  =  B )  ->  ( ( z  e.  Z  /\  w  e.  W )  <->  ( A  e.  Z  /\  B  e.  W ) ) )
46 cnmpt22.d . . . . . . . . 9  |-  ( ( z  =  A  /\  w  =  B )  ->  C  =  D )
4746eleq1d 2362 . . . . . . . 8  |-  ( ( z  =  A  /\  w  =  B )  ->  ( C  e.  U. N 
<->  D  e.  U. N
) )
4845, 47imbi12d 311 . . . . . . 7  |-  ( ( z  =  A  /\  w  =  B )  ->  ( ( ( z  e.  Z  /\  w  e.  W )  ->  C  e.  U. N )  <->  ( ( A  e.  Z  /\  B  e.  W )  ->  D  e.  U. N
) ) )
4948spc2gv 2884 . . . . . 6  |-  ( ( A  e.  Z  /\  B  e.  W )  ->  ( A. z A. w ( ( z  e.  Z  /\  w  e.  W )  ->  C  e.  U. N )  -> 
( ( A  e.  Z  /\  B  e.  W )  ->  D  e.  U. N ) ) )
5026, 42, 26, 49syl3c 57 . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  D  e.  U. N )
5146, 37ovmpt2ga 5993 . . . . 5  |-  ( ( A  e.  Z  /\  B  e.  W  /\  D  e.  U. N )  ->  ( A ( z  e.  Z ,  w  e.  W  |->  C ) B )  =  D )
5215, 25, 50, 51syl3anc 1182 . . . 4  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( A
( z  e.  Z ,  w  e.  W  |->  C ) B )  =  D )
531, 52syl5eqr 2342 . . 3  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( (
z  e.  Z ,  w  e.  W  |->  C ) `  <. A ,  B >. )  =  D )
5453mpt2eq3dva 5928 . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( ( z  e.  Z ,  w  e.  W  |->  C ) `  <. A ,  B >. ) )  =  ( x  e.  X ,  y  e.  Y  |->  D ) )
552, 3, 7, 17cnmpt2t 17383 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. A ,  B >. )  e.  ( ( J 
tX  K )  Cn  ( L  tX  M
) ) )
562, 3, 55, 29cnmpt21f 17382 . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( ( z  e.  Z ,  w  e.  W  |->  C ) `  <. A ,  B >. ) )  e.  ( ( J  tX  K )  Cn  N ) )
5754, 56eqeltrrd 2371 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  D )  e.  ( ( J  tX  K
)  Cn  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1530    = wceq 1632    e. wcel 1696   A.wral 2556   <.cop 3656   U.cuni 3843    X. cxp 4703   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   Topctop 16647  TopOnctopon 16648    Cn ccn 16970    tX ctx 17271
This theorem is referenced by:  cnmpt22f  17385  xkofvcn  17394  cnmptk2  17396  pcorevlem  18540
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-map 6790  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655  df-cn 16973  df-tx 17273
  Copyright terms: Public domain W3C validator