MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt22f Unicode version

Theorem cnmpt22f 17628
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt2t.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
cnmpt22f.f  |-  ( ph  ->  F  e.  ( ( L  tX  M )  Cn  N ) )
Assertion
Ref Expression
cnmpt22f  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J  tX  K
)  Cn  N ) )
Distinct variable groups:    x, y, F    x, L, y    ph, x, y    x, X, y    x, M, y    x, N, y   
x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt22f
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmpt21.k . 2  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 cnmpt21.a . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
4 cnmpt2t.b . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
5 cntop2 17227 . . . 4  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
63, 5syl 16 . . 3  |-  ( ph  ->  L  e.  Top )
7 eqid 2387 . . . 4  |-  U. L  =  U. L
87toptopon 16921 . . 3  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
96, 8sylib 189 . 2  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
10 cntop2 17227 . . . 4  |-  ( ( x  e.  X , 
y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M )  ->  M  e.  Top )
114, 10syl 16 . . 3  |-  ( ph  ->  M  e.  Top )
12 eqid 2387 . . . 4  |-  U. M  =  U. M
1312toptopon 16921 . . 3  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
1411, 13sylib 189 . 2  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
15 txtopon 17544 . . . . . . 7  |-  ( ( L  e.  (TopOn `  U. L )  /\  M  e.  (TopOn `  U. M ) )  ->  ( L  tX  M )  e.  (TopOn `  ( U. L  X.  U. M ) ) )
169, 14, 15syl2anc 643 . . . . . 6  |-  ( ph  ->  ( L  tX  M
)  e.  (TopOn `  ( U. L  X.  U. M ) ) )
17 cnmpt22f.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( ( L  tX  M )  Cn  N ) )
18 cntop2 17227 . . . . . . . 8  |-  ( F  e.  ( ( L 
tX  M )  Cn  N )  ->  N  e.  Top )
1917, 18syl 16 . . . . . . 7  |-  ( ph  ->  N  e.  Top )
20 eqid 2387 . . . . . . . 8  |-  U. N  =  U. N
2120toptopon 16921 . . . . . . 7  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
2219, 21sylib 189 . . . . . 6  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
23 cnf2 17235 . . . . . 6  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( U. L  X.  U. M ) )  /\  N  e.  (TopOn `  U. N )  /\  F  e.  ( ( L  tX  M )  Cn  N
) )  ->  F : ( U. L  X.  U. M ) --> U. N )
2416, 22, 17, 23syl3anc 1184 . . . . 5  |-  ( ph  ->  F : ( U. L  X.  U. M ) --> U. N )
25 ffn 5531 . . . . 5  |-  ( F : ( U. L  X.  U. M ) --> U. N  ->  F  Fn  ( U. L  X.  U. M ) )
2624, 25syl 16 . . . 4  |-  ( ph  ->  F  Fn  ( U. L  X.  U. M ) )
27 fnov 6117 . . . 4  |-  ( F  Fn  ( U. L  X.  U. M )  <->  F  =  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) ) )
2826, 27sylib 189 . . 3  |-  ( ph  ->  F  =  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) ) )
2928, 17eqeltrrd 2462 . 2  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) )  e.  ( ( L  tX  M )  Cn  N
) )
30 oveq12 6029 . 2  |-  ( ( z  =  A  /\  w  =  B )  ->  ( z F w )  =  ( A F B ) )
311, 2, 3, 4, 9, 14, 29, 30cnmpt22 17627 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J  tX  K
)  Cn  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   U.cuni 3957    X. cxp 4816    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020    e. cmpt2 6022   Topctop 16881  TopOnctopon 16882    Cn ccn 17210    tX ctx 17513
This theorem is referenced by:  cnmptcom  17631  cnmpt2plusg  18039  istgp2  18042  cnmpt2vsca  18145  cnmpt2ds  18745  divcn  18769  cnrehmeo  18849  htpycom  18872  htpyco1  18874  htpycc  18876  reparphti  18893  pcohtpylem  18915  cnmpt2ip  19073  cxpcn  20496  vmcn  22043  dipcn  22067  mndpluscn  24116  cvxscon  24709
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-map 6956  df-topgen 13594  df-top 16886  df-bases 16888  df-topon 16889  df-cn 17213  df-tx 17515
  Copyright terms: Public domain W3C validator