MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2k Structured version   Unicode version

Theorem cnmpt2k 17712
Description: The currying of a two-argument function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
cnmpt2k.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt2k.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt2k.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
Assertion
Ref Expression
cnmpt2k  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )  e.  ( J  Cn  ( L  ^ k o  K
) ) )
Distinct variable groups:    x, y, L    ph, x, y    x, X, y    x, Y, y
Allowed substitution hints:    A( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt2k
Dummy variables  w  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2571 . . . . 5  |-  F/_ x Y
2 nfcv 2571 . . . . . 6  |-  F/_ x
v
3 nfmpt22 6133 . . . . . 6  |-  F/_ x
( y  e.  Y ,  x  e.  X  |->  A )
4 nfcv 2571 . . . . . 6  |-  F/_ x w
52, 3, 4nfov 6096 . . . . 5  |-  F/_ x
( v ( y  e.  Y ,  x  e.  X  |->  A ) w )
61, 5nfmpt 4289 . . . 4  |-  F/_ x
( v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
7 nfcv 2571 . . . 4  |-  F/_ w
( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
8 nfcv 2571 . . . . . . 7  |-  F/_ y
v
9 nfmpt21 6132 . . . . . . 7  |-  F/_ y
( y  e.  Y ,  x  e.  X  |->  A )
10 nfcv 2571 . . . . . . 7  |-  F/_ y
w
118, 9, 10nfov 6096 . . . . . 6  |-  F/_ y
( v ( y  e.  Y ,  x  e.  X  |->  A ) w )
12 nfcv 2571 . . . . . 6  |-  F/_ v
( y ( y  e.  Y ,  x  e.  X  |->  A ) w )
13 oveq1 6080 . . . . . 6  |-  ( v  =  y  ->  (
v ( y  e.  Y ,  x  e.  X  |->  A ) w )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
1411, 12, 13cbvmpt 4291 . . . . 5  |-  ( v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) )  =  ( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
15 oveq2 6081 . . . . . 6  |-  ( w  =  x  ->  (
y ( y  e.  Y ,  x  e.  X  |->  A ) w )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
1615mpteq2dv 4288 . . . . 5  |-  ( w  =  x  ->  (
y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) w ) )  =  ( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
1714, 16syl5eq 2479 . . . 4  |-  ( w  =  x  ->  (
v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) )  =  ( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
186, 7, 17cbvmpt 4291 . . 3  |-  ( w  e.  X  |->  ( v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )  =  ( x  e.  X  |->  ( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
19 simpr 448 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  y  e.  Y )
20 simplr 732 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  x  e.  X )
21 cnmpt2k.k . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
22 cnmpt2k.j . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  (TopOn `  X ) )
23 txtopon 17615 . . . . . . . . . . . 12  |-  ( ( K  e.  (TopOn `  Y )  /\  J  e.  (TopOn `  X )
)  ->  ( K  tX  J )  e.  (TopOn `  ( Y  X.  X
) ) )
2421, 22, 23syl2anc 643 . . . . . . . . . . 11  |-  ( ph  ->  ( K  tX  J
)  e.  (TopOn `  ( Y  X.  X
) ) )
25 cnmpt2k.a . . . . . . . . . . . . 13  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
26 cntop2 17297 . . . . . . . . . . . . 13  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
2725, 26syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  Top )
28 eqid 2435 . . . . . . . . . . . . 13  |-  U. L  =  U. L
2928toptopon 16990 . . . . . . . . . . . 12  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
3027, 29sylib 189 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
3122, 21, 25cnmptcom 17702 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K  tX  J
)  Cn  L ) )
32 cnf2 17305 . . . . . . . . . . 11  |-  ( ( ( K  tX  J
)  e.  (TopOn `  ( Y  X.  X
) )  /\  L  e.  (TopOn `  U. L )  /\  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K  tX  J )  Cn  L
) )  ->  (
y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X ) --> U. L )
3324, 30, 31, 32syl3anc 1184 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X ) --> U. L )
34 eqid 2435 . . . . . . . . . . 11  |-  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( y  e.  Y ,  x  e.  X  |->  A )
3534fmpt2 6410 . . . . . . . . . 10  |-  ( A. y  e.  Y  A. x  e.  X  A  e.  U. L  <->  ( y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X
) --> U. L )
3633, 35sylibr 204 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  Y  A. x  e.  X  A  e.  U. L )
3736r19.21bi 2796 . . . . . . . 8  |-  ( (
ph  /\  y  e.  Y )  ->  A. x  e.  X  A  e.  U. L )
3837r19.21bi 2796 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Y )  /\  x  e.  X )  ->  A  e.  U. L )
3938an32s 780 . . . . . 6  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  A  e.  U. L )
4034ovmpt4g 6188 . . . . . 6  |-  ( ( y  e.  Y  /\  x  e.  X  /\  A  e.  U. L )  ->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  A )
4119, 20, 39, 40syl3anc 1184 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  (
y ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  A )
4241mpteq2dva 4287 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )  =  ( y  e.  Y  |->  A ) )
4342mpteq2dva 4287 . . 3  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )  =  ( x  e.  X  |->  ( y  e.  Y  |->  A ) ) )
4418, 43syl5eq 2479 . 2  |-  ( ph  ->  ( w  e.  X  |->  ( v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )  =  ( x  e.  X  |->  ( y  e.  Y  |->  A ) ) )
45 eqid 2435 . . . . 5  |-  ( w  e.  X  |->  ( v  e.  Y  |->  <. v ,  w >. ) )  =  ( w  e.  X  |->  ( v  e.  Y  |-> 
<. v ,  w >. ) )
4645xkoinjcn 17711 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( w  e.  X  |->  ( v  e.  Y  |->  <. v ,  w >. ) )  e.  ( J  Cn  (
( K  tX  J
)  ^ k o  K ) ) )
4722, 21, 46syl2anc 643 . . 3  |-  ( ph  ->  ( w  e.  X  |->  ( v  e.  Y  |-> 
<. v ,  w >. ) )  e.  ( J  Cn  ( ( K 
tX  J )  ^ k o  K )
) )
4833feqmptd 5771 . . . 4  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( z  e.  ( Y  X.  X )  |->  ( ( y  e.  Y ,  x  e.  X  |->  A ) `  z
) ) )
4948, 31eqeltrrd 2510 . . 3  |-  ( ph  ->  ( z  e.  ( Y  X.  X ) 
|->  ( ( y  e.  Y ,  x  e.  X  |->  A ) `  z ) )  e.  ( ( K  tX  J )  Cn  L
) )
50 fveq2 5720 . . . 4  |-  ( z  =  <. v ,  w >.  ->  ( ( y  e.  Y ,  x  e.  X  |->  A ) `
 z )  =  ( ( y  e.  Y ,  x  e.  X  |->  A ) `  <. v ,  w >. ) )
51 df-ov 6076 . . . 4  |-  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w )  =  ( ( y  e.  Y ,  x  e.  X  |->  A ) `
 <. v ,  w >. )
5250, 51syl6eqr 2485 . . 3  |-  ( z  =  <. v ,  w >.  ->  ( ( y  e.  Y ,  x  e.  X  |->  A ) `
 z )  =  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
5322, 21, 24, 47, 49, 52cnmptk1 17705 . 2  |-  ( ph  ->  ( w  e.  X  |->  ( v  e.  Y  |->  ( v ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )  e.  ( J  Cn  ( L  ^ k o  K ) ) )
5444, 53eqeltrrd 2510 1  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )  e.  ( J  Cn  ( L  ^ k o  K
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   <.cop 3809   U.cuni 4007    e. cmpt 4258    X. cxp 4868   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   Topctop 16950  TopOnctopon 16951    Cn ccn 17280    tX ctx 17584    ^ k o cxko 17585
This theorem is referenced by:  xkocnv  17838  xkohmeo  17839
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-fin 7105  df-fi 7408  df-rest 13642  df-topgen 13659  df-top 16955  df-bases 16957  df-topon 16958  df-cn 17283  df-cnp 17284  df-cmp 17442  df-tx 17586  df-xko 17587
  Copyright terms: Public domain W3C validator