MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2res Structured version   Unicode version

Theorem cnmpt2res 17699
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmpt1res.2  |-  K  =  ( Jt  Y )
cnmpt1res.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt1res.5  |-  ( ph  ->  Y  C_  X )
cnmpt2res.7  |-  N  =  ( Mt  W )
cnmpt2res.8  |-  ( ph  ->  M  e.  (TopOn `  Z ) )
cnmpt2res.9  |-  ( ph  ->  W  C_  Z )
cnmpt2res.10  |-  ( ph  ->  ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L ) )
Assertion
Ref Expression
cnmpt2res  |-  ( ph  ->  ( x  e.  Y ,  y  e.  W  |->  A )  e.  ( ( K  tX  N
)  Cn  L ) )
Distinct variable groups:    x, y, W    x, X, y    x, Y, y    x, Z, y
Allowed substitution hints:    ph( x, y)    A( x, y)    J( x, y)    K( x, y)    L( x, y)    M( x, y)    N( x, y)

Proof of Theorem cnmpt2res
StepHypRef Expression
1 cnmpt2res.10 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L ) )
2 cnmpt1res.5 . . . . 5  |-  ( ph  ->  Y  C_  X )
3 cnmpt2res.9 . . . . 5  |-  ( ph  ->  W  C_  Z )
4 xpss12 4973 . . . . 5  |-  ( ( Y  C_  X  /\  W  C_  Z )  -> 
( Y  X.  W
)  C_  ( X  X.  Z ) )
52, 3, 4syl2anc 643 . . . 4  |-  ( ph  ->  ( Y  X.  W
)  C_  ( X  X.  Z ) )
6 cnmpt1res.3 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
7 cnmpt2res.8 . . . . . 6  |-  ( ph  ->  M  e.  (TopOn `  Z ) )
8 txtopon 17613 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  (TopOn `  Z )
)  ->  ( J  tX  M )  e.  (TopOn `  ( X  X.  Z
) ) )
96, 7, 8syl2anc 643 . . . . 5  |-  ( ph  ->  ( J  tX  M
)  e.  (TopOn `  ( X  X.  Z
) ) )
10 toponuni 16982 . . . . 5  |-  ( ( J  tX  M )  e.  (TopOn `  ( X  X.  Z ) )  ->  ( X  X.  Z )  =  U. ( J  tX  M ) )
119, 10syl 16 . . . 4  |-  ( ph  ->  ( X  X.  Z
)  =  U. ( J  tX  M ) )
125, 11sseqtrd 3376 . . 3  |-  ( ph  ->  ( Y  X.  W
)  C_  U. ( J  tX  M ) )
13 eqid 2435 . . . 4  |-  U. ( J  tX  M )  = 
U. ( J  tX  M )
1413cnrest 17339 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Z  |->  A )  e.  ( ( J  tX  M
)  Cn  L )  /\  ( Y  X.  W )  C_  U. ( J  tX  M ) )  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  e.  ( ( ( J  tX  M )t  ( Y  X.  W ) )  Cn  L ) )
151, 12, 14syl2anc 643 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  e.  ( ( ( J  tX  M )t  ( Y  X.  W ) )  Cn  L ) )
16 resmpt2 6160 . . 3  |-  ( ( Y  C_  X  /\  W  C_  Z )  -> 
( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  =  ( x  e.  Y , 
y  e.  W  |->  A ) )
172, 3, 16syl2anc 643 . 2  |-  ( ph  ->  ( ( x  e.  X ,  y  e.  Z  |->  A )  |`  ( Y  X.  W
) )  =  ( x  e.  Y , 
y  e.  W  |->  A ) )
18 topontop 16981 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
196, 18syl 16 . . . . 5  |-  ( ph  ->  J  e.  Top )
20 topontop 16981 . . . . . 6  |-  ( M  e.  (TopOn `  Z
)  ->  M  e.  Top )
217, 20syl 16 . . . . 5  |-  ( ph  ->  M  e.  Top )
22 toponmax 16983 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
236, 22syl 16 . . . . . 6  |-  ( ph  ->  X  e.  J )
2423, 2ssexd 4342 . . . . 5  |-  ( ph  ->  Y  e.  _V )
25 toponmax 16983 . . . . . . 7  |-  ( M  e.  (TopOn `  Z
)  ->  Z  e.  M )
267, 25syl 16 . . . . . 6  |-  ( ph  ->  Z  e.  M )
2726, 3ssexd 4342 . . . . 5  |-  ( ph  ->  W  e.  _V )
28 txrest 17653 . . . . 5  |-  ( ( ( J  e.  Top  /\  M  e.  Top )  /\  ( Y  e.  _V  /\  W  e.  _V )
)  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( ( Jt  Y )  tX  ( Mt  W ) ) )
2919, 21, 24, 27, 28syl22anc 1185 . . . 4  |-  ( ph  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( ( Jt  Y ) 
tX  ( Mt  W ) ) )
30 cnmpt1res.2 . . . . 5  |-  K  =  ( Jt  Y )
31 cnmpt2res.7 . . . . 5  |-  N  =  ( Mt  W )
3230, 31oveq12i 6085 . . . 4  |-  ( K 
tX  N )  =  ( ( Jt  Y ) 
tX  ( Mt  W ) )
3329, 32syl6eqr 2485 . . 3  |-  ( ph  ->  ( ( J  tX  M )t  ( Y  X.  W ) )  =  ( K  tX  N
) )
3433oveq1d 6088 . 2  |-  ( ph  ->  ( ( ( J 
tX  M )t  ( Y  X.  W ) )  Cn  L )  =  ( ( K  tX  N )  Cn  L
) )
3515, 17, 343eltr3d 2515 1  |-  ( ph  ->  ( x  e.  Y ,  y  e.  W  |->  A )  e.  ( ( K  tX  N
)  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   _Vcvv 2948    C_ wss 3312   U.cuni 4007    X. cxp 4868    |` cres 4872   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   ↾t crest 13638   Topctop 16948  TopOnctopon 16949    Cn ccn 17278    tX ctx 17582
This theorem is referenced by:  symgtgp  18121  submtmd  18124  iimulcn  18953  cxpcn2  20620  cxpcn3  20622  cvxscon  24920  cvmlift2lem6  24985  cvmlift2lem12  24991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-fin 7105  df-fi 7408  df-rest 13640  df-topgen 13657  df-top 16953  df-bases 16955  df-topon 16956  df-cn 17281  df-tx 17584
  Copyright terms: Public domain W3C validator