MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2vsca Unicode version

Theorem cnmpt2vsca 18139
Description: Continuity of scalar multiplication; analogue of cnmpt22f 17622 which cannot be used directly because  .s is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
tlmtrg.f  |-  F  =  (Scalar `  W )
cnmpt1vsca.t  |-  .x.  =  ( .s `  W )
cnmpt1vsca.j  |-  J  =  ( TopOpen `  W )
cnmpt1vsca.k  |-  K  =  ( TopOpen `  F )
cnmpt1vsca.w  |-  ( ph  ->  W  e. TopMod )
cnmpt1vsca.l  |-  ( ph  ->  L  e.  (TopOn `  X ) )
cnmpt2vsca.m  |-  ( ph  ->  M  e.  (TopOn `  Y ) )
cnmpt2vsca.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( L  tX  M
)  Cn  K ) )
cnmpt2vsca.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( L  tX  M
)  Cn  J ) )
Assertion
Ref Expression
cnmpt2vsca  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A  .x.  B
) )  e.  ( ( L  tX  M
)  Cn  J ) )
Distinct variable groups:    x, y, F    x, J, y    x, K, y    x, L    ph, x, y    x, W, y    x, X, y    x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    .x. ( x, y)    L( y)    M( x, y)

Proof of Theorem cnmpt2vsca
StepHypRef Expression
1 cnmpt1vsca.l . . . . . . . . . 10  |-  ( ph  ->  L  e.  (TopOn `  X ) )
2 cnmpt2vsca.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  (TopOn `  Y ) )
3 txtopon 17538 . . . . . . . . . 10  |-  ( ( L  e.  (TopOn `  X )  /\  M  e.  (TopOn `  Y )
)  ->  ( L  tX  M )  e.  (TopOn `  ( X  X.  Y
) ) )
41, 2, 3syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( L  tX  M
)  e.  (TopOn `  ( X  X.  Y
) ) )
5 cnmpt1vsca.w . . . . . . . . . . 11  |-  ( ph  ->  W  e. TopMod )
6 tlmtrg.f . . . . . . . . . . . 12  |-  F  =  (Scalar `  W )
76tlmscatps 18135 . . . . . . . . . . 11  |-  ( W  e. TopMod  ->  F  e.  TopSp )
85, 7syl 16 . . . . . . . . . 10  |-  ( ph  ->  F  e.  TopSp )
9 eqid 2381 . . . . . . . . . . 11  |-  ( Base `  F )  =  (
Base `  F )
10 cnmpt1vsca.k . . . . . . . . . . 11  |-  K  =  ( TopOpen `  F )
119, 10istps 16918 . . . . . . . . . 10  |-  ( F  e.  TopSp 
<->  K  e.  (TopOn `  ( Base `  F )
) )
128, 11sylib 189 . . . . . . . . 9  |-  ( ph  ->  K  e.  (TopOn `  ( Base `  F )
) )
13 cnmpt2vsca.a . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( L  tX  M
)  Cn  K ) )
14 cnf2 17229 . . . . . . . . 9  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( X  X.  Y
) )  /\  K  e.  (TopOn `  ( Base `  F ) )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( L  tX  M
)  Cn  K ) )  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> ( Base `  F
) )
154, 12, 13, 14syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> ( Base `  F
) )
16 eqid 2381 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
1716fmpt2 6351 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  ( Base `  F
)  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> ( Base `  F
) )
1815, 17sylibr 204 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  A  e.  ( Base `  F ) )
1918r19.21bi 2741 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  A  e.  ( Base `  F )
)
2019r19.21bi 2741 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  A  e.  ( Base `  F
) )
21 tlmtps 18132 . . . . . . . . . . 11  |-  ( W  e. TopMod  ->  W  e.  TopSp )
225, 21syl 16 . . . . . . . . . 10  |-  ( ph  ->  W  e.  TopSp )
23 eqid 2381 . . . . . . . . . . 11  |-  ( Base `  W )  =  (
Base `  W )
24 cnmpt1vsca.j . . . . . . . . . . 11  |-  J  =  ( TopOpen `  W )
2523, 24istps 16918 . . . . . . . . . 10  |-  ( W  e.  TopSp 
<->  J  e.  (TopOn `  ( Base `  W )
) )
2622, 25sylib 189 . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  ( Base `  W )
) )
27 cnmpt2vsca.b . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( L  tX  M
)  Cn  J ) )
28 cnf2 17229 . . . . . . . . 9  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( X  X.  Y
) )  /\  J  e.  (TopOn `  ( Base `  W ) )  /\  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( L  tX  M
)  Cn  J ) )  ->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y
) --> ( Base `  W
) )
294, 26, 27, 28syl3anc 1184 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y ) --> ( Base `  W
) )
30 eqid 2381 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  B )  =  ( x  e.  X ,  y  e.  Y  |->  B )
3130fmpt2 6351 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  B  e.  ( Base `  W
)  <->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y
) --> ( Base `  W
) )
3229, 31sylibr 204 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  B  e.  ( Base `  W ) )
3332r19.21bi 2741 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  B  e.  ( Base `  W )
)
3433r19.21bi 2741 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  B  e.  ( Base `  W
) )
35 eqid 2381 . . . . . 6  |-  ( .s f `  W )  =  ( .s f `  W )
36 cnmpt1vsca.t . . . . . 6  |-  .x.  =  ( .s `  W )
3723, 6, 9, 35, 36scafval 15890 . . . . 5  |-  ( ( A  e.  ( Base `  F )  /\  B  e.  ( Base `  W
) )  ->  ( A ( .s f `  W ) B )  =  ( A  .x.  B ) )
3820, 34, 37syl2anc 643 . . . 4  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  ( A ( .s f `  W ) B )  =  ( A  .x.  B ) )
39383impa 1148 . . 3  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( A
( .s f `  W ) B )  =  ( A  .x.  B ) )
4039mpt2eq3dva 6071 . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A ( .s f `  W ) B ) )  =  ( x  e.  X ,  y  e.  Y  |->  ( A  .x.  B
) ) )
4135, 24, 6, 10vscacn 18130 . . . 4  |-  ( W  e. TopMod  ->  ( .s f `  W )  e.  ( ( K  tX  J
)  Cn  J ) )
425, 41syl 16 . . 3  |-  ( ph  ->  ( .s f `  W )  e.  ( ( K  tX  J
)  Cn  J ) )
431, 2, 13, 27, 42cnmpt22f 17622 . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A ( .s f `  W ) B ) )  e.  ( ( L  tX  M )  Cn  J
) )
4440, 43eqeltrrd 2456 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A  .x.  B
) )  e.  ( ( L  tX  M
)  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2643    X. cxp 4810   -->wf 5384   ` cfv 5388  (class class class)co 6014    e. cmpt2 6016   Basecbs 13390  Scalarcsca 13453   .scvsca 13454   TopOpenctopn 13570   .s fcscaf 15872  TopOnctopon 16876   TopSpctps 16878    Cn ccn 17204    tX ctx 17507  TopModctlm 18102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2362  ax-sep 4265  ax-nul 4273  ax-pow 4312  ax-pr 4338  ax-un 4635
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2236  df-mo 2237  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2506  df-ne 2546  df-ral 2648  df-rex 2649  df-rab 2652  df-v 2895  df-sbc 3099  df-csb 3189  df-dif 3260  df-un 3262  df-in 3264  df-ss 3271  df-nul 3566  df-if 3677  df-pw 3738  df-sn 3757  df-pr 3758  df-op 3760  df-uni 3952  df-iun 4031  df-br 4148  df-opab 4202  df-mpt 4203  df-id 4433  df-xp 4818  df-rel 4819  df-cnv 4820  df-co 4821  df-dm 4822  df-rn 4823  df-res 4824  df-ima 4825  df-iota 5352  df-fun 5390  df-fn 5391  df-f 5392  df-fv 5396  df-ov 6017  df-oprab 6018  df-mpt2 6019  df-1st 6282  df-2nd 6283  df-map 6950  df-slot 13394  df-base 13395  df-topgen 13588  df-scaf 15874  df-top 16880  df-bases 16882  df-topon 16883  df-topsp 16884  df-cn 17207  df-tx 17509  df-tmd 18017  df-tgp 18018  df-trg 18104  df-tlm 18106
  Copyright terms: Public domain W3C validator