MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt2vsca Unicode version

Theorem cnmpt2vsca 17893
Description: Continuity of scalar multiplication; analogue of cnmpt22f 17385 which cannot be used directly because  .s is not a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
tlmtrg.f  |-  F  =  (Scalar `  W )
cnmpt1vsca.t  |-  .x.  =  ( .s `  W )
cnmpt1vsca.j  |-  J  =  ( TopOpen `  W )
cnmpt1vsca.k  |-  K  =  ( TopOpen `  F )
cnmpt1vsca.w  |-  ( ph  ->  W  e. TopMod )
cnmpt1vsca.l  |-  ( ph  ->  L  e.  (TopOn `  X ) )
cnmpt2vsca.m  |-  ( ph  ->  M  e.  (TopOn `  Y ) )
cnmpt2vsca.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( L  tX  M
)  Cn  K ) )
cnmpt2vsca.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( L  tX  M
)  Cn  J ) )
Assertion
Ref Expression
cnmpt2vsca  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A  .x.  B
) )  e.  ( ( L  tX  M
)  Cn  J ) )
Distinct variable groups:    x, y, F    x, J, y    x, K, y    x, L    ph, x, y    x, W, y    x, X, y    x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    .x. ( x, y)    L( y)    M( x, y)

Proof of Theorem cnmpt2vsca
StepHypRef Expression
1 cnmpt1vsca.l . . . . . . . . . 10  |-  ( ph  ->  L  e.  (TopOn `  X ) )
2 cnmpt2vsca.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  (TopOn `  Y ) )
3 txtopon 17302 . . . . . . . . . 10  |-  ( ( L  e.  (TopOn `  X )  /\  M  e.  (TopOn `  Y )
)  ->  ( L  tX  M )  e.  (TopOn `  ( X  X.  Y
) ) )
41, 2, 3syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( L  tX  M
)  e.  (TopOn `  ( X  X.  Y
) ) )
5 cnmpt1vsca.w . . . . . . . . . . 11  |-  ( ph  ->  W  e. TopMod )
6 tlmtrg.f . . . . . . . . . . . 12  |-  F  =  (Scalar `  W )
76tlmscatps 17889 . . . . . . . . . . 11  |-  ( W  e. TopMod  ->  F  e.  TopSp )
85, 7syl 15 . . . . . . . . . 10  |-  ( ph  ->  F  e.  TopSp )
9 eqid 2296 . . . . . . . . . . 11  |-  ( Base `  F )  =  (
Base `  F )
10 cnmpt1vsca.k . . . . . . . . . . 11  |-  K  =  ( TopOpen `  F )
119, 10istps 16690 . . . . . . . . . 10  |-  ( F  e.  TopSp 
<->  K  e.  (TopOn `  ( Base `  F )
) )
128, 11sylib 188 . . . . . . . . 9  |-  ( ph  ->  K  e.  (TopOn `  ( Base `  F )
) )
13 cnmpt2vsca.a . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( L  tX  M
)  Cn  K ) )
14 cnf2 16995 . . . . . . . . 9  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( X  X.  Y
) )  /\  K  e.  (TopOn `  ( Base `  F ) )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( L  tX  M
)  Cn  K ) )  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> ( Base `  F
) )
154, 12, 13, 14syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> ( Base `  F
) )
16 eqid 2296 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
1716fmpt2 6207 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  ( Base `  F
)  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> ( Base `  F
) )
1815, 17sylibr 203 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  A  e.  ( Base `  F ) )
1918r19.21bi 2654 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  A  e.  ( Base `  F )
)
2019r19.21bi 2654 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  A  e.  ( Base `  F
) )
21 tlmtps 17886 . . . . . . . . . . 11  |-  ( W  e. TopMod  ->  W  e.  TopSp )
225, 21syl 15 . . . . . . . . . 10  |-  ( ph  ->  W  e.  TopSp )
23 eqid 2296 . . . . . . . . . . 11  |-  ( Base `  W )  =  (
Base `  W )
24 cnmpt1vsca.j . . . . . . . . . . 11  |-  J  =  ( TopOpen `  W )
2523, 24istps 16690 . . . . . . . . . 10  |-  ( W  e.  TopSp 
<->  J  e.  (TopOn `  ( Base `  W )
) )
2622, 25sylib 188 . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  ( Base `  W )
) )
27 cnmpt2vsca.b . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( L  tX  M
)  Cn  J ) )
28 cnf2 16995 . . . . . . . . 9  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( X  X.  Y
) )  /\  J  e.  (TopOn `  ( Base `  W ) )  /\  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( L  tX  M
)  Cn  J ) )  ->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y
) --> ( Base `  W
) )
294, 26, 27, 28syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y ) --> ( Base `  W
) )
30 eqid 2296 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  B )  =  ( x  e.  X ,  y  e.  Y  |->  B )
3130fmpt2 6207 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  B  e.  ( Base `  W
)  <->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y
) --> ( Base `  W
) )
3229, 31sylibr 203 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  B  e.  ( Base `  W ) )
3332r19.21bi 2654 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  B  e.  ( Base `  W )
)
3433r19.21bi 2654 . . . . 5  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  B  e.  ( Base `  W
) )
35 eqid 2296 . . . . . 6  |-  ( .s f `  W )  =  ( .s f `  W )
36 cnmpt1vsca.t . . . . . 6  |-  .x.  =  ( .s `  W )
3723, 6, 9, 35, 36scafval 15662 . . . . 5  |-  ( ( A  e.  ( Base `  F )  /\  B  e.  ( Base `  W
) )  ->  ( A ( .s f `  W ) B )  =  ( A  .x.  B ) )
3820, 34, 37syl2anc 642 . . . 4  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  Y )  ->  ( A ( .s f `  W ) B )  =  ( A  .x.  B ) )
39383impa 1146 . . 3  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( A
( .s f `  W ) B )  =  ( A  .x.  B ) )
4039mpt2eq3dva 5928 . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A ( .s f `  W ) B ) )  =  ( x  e.  X ,  y  e.  Y  |->  ( A  .x.  B
) ) )
4135, 24, 6, 10vscacn 17884 . . . 4  |-  ( W  e. TopMod  ->  ( .s f `  W )  e.  ( ( K  tX  J
)  Cn  J ) )
425, 41syl 15 . . 3  |-  ( ph  ->  ( .s f `  W )  e.  ( ( K  tX  J
)  Cn  J ) )
431, 2, 13, 27, 42cnmpt22f 17385 . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A ( .s f `  W ) B ) )  e.  ( ( L  tX  M )  Cn  J
) )
4440, 43eqeltrrd 2371 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A  .x.  B
) )  e.  ( ( L  tX  M
)  Cn  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    X. cxp 4703   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   Basecbs 13164  Scalarcsca 13227   .scvsca 13228   TopOpenctopn 13342   .s fcscaf 15644  TopOnctopon 16648   TopSpctps 16650    Cn ccn 16970    tX ctx 17271  TopModctlm 17856
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-map 6790  df-slot 13168  df-base 13169  df-topgen 13360  df-scaf 15646  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cn 16973  df-tx 17273  df-tmd 17771  df-tgp 17772  df-trg 17858  df-tlm 17860
  Copyright terms: Public domain W3C validator