MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptc Structured version   Unicode version

Theorem cnmptc 17686
Description: A constant function is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmptc.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmptc.p  |-  ( ph  ->  P  e.  Y )
Assertion
Ref Expression
cnmptc  |-  ( ph  ->  ( x  e.  X  |->  P )  e.  ( J  Cn  K ) )
Distinct variable groups:    ph, x    x, J    x, X    x, Y    x, K    x, P

Proof of Theorem cnmptc
StepHypRef Expression
1 fconstmpt 4913 . 2  |-  ( X  X.  { P }
)  =  ( x  e.  X  |->  P )
2 cnmptid.j . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 cnmptc.k . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
4 cnmptc.p . . 3  |-  ( ph  ->  P  e.  Y )
5 cnconst2 17339 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  Y
)  ->  ( X  X.  { P } )  e.  ( J  Cn  K ) )
62, 3, 4, 5syl3anc 1184 . 2  |-  ( ph  ->  ( X  X.  { P } )  e.  ( J  Cn  K ) )
71, 6syl5eqelr 2520 1  |-  ( ph  ->  ( x  e.  X  |->  P )  e.  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725   {csn 3806    e. cmpt 4258    X. cxp 4868   ` cfv 5446  (class class class)co 6073  TopOnctopon 16951    Cn ccn 17280
This theorem is referenced by:  cnmpt2c  17694  xkoinjcn  17711  txcon  17713  imasnopn  17714  imasncld  17715  imasncls  17716  istgp2  18113  tmdmulg  18114  tmdgsum  18117  tmdlactcn  18124  clsnsg  18131  tgpt0  18140  tlmtgp  18217  nmcn  18867  fsumcn  18892  expcn  18894  divccn  18895  cncfmptc  18933  cdivcncf  18939  iirevcn  18947  iihalf1cn  18949  iihalf2cn  18951  icchmeo  18958  evth  18976  evth2  18977  pcocn  19034  pcopt  19039  pcopt2  19040  pcoass  19041  csscld  19195  clsocv  19196  dvcnvlem  19852  plycn  20171  psercn2  20331  resqrcn  20625  sqrcn  20626  atansopn  20764  efrlim  20800  ipasslem7  22329  occllem  22797  rmulccn  24306  txsconlem  24919  cvxpcon  24921  cvmlift2lem2  24983  cvmlift2lem3  24984  cvmliftphtlem  24996  sinccvglem  25101  areacirclem4  26284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-map 7012  df-topgen 13659  df-top 16955  df-topon 16958  df-cn 17283  df-cnp 17284
  Copyright terms: Public domain W3C validator