MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptk1 Structured version   Unicode version

Theorem cnmptk1 17714
Description: The composition of a curried function with a one-arg function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
cnmptk1.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmptk1.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmptk1.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmptk1.a  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )  e.  ( J  Cn  ( L  ^ k o  K
) ) )
cnmptk1.b  |-  ( ph  ->  ( z  e.  Z  |->  B )  e.  ( L  Cn  M ) )
cnmptk1.c  |-  ( z  =  A  ->  B  =  C )
Assertion
Ref Expression
cnmptk1  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  C ) )  e.  ( J  Cn  ( M  ^ k o  K
) ) )
Distinct variable groups:    x, y, J    x, K, y    x, L, y    x, M, y   
x, z, Z, y   
z, A    x, B    ph, x, y    x, X, y    x, Y, y   
z, C    y, B
Allowed substitution hints:    ph( z)    A( x, y)    B( z)    C( x, y)    J( z)    K( z)    L( z)    M( z)    X( z)    Y( z)

Proof of Theorem cnmptk1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 cnmptk1.k . . . . . . 7  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
21adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  K  e.  (TopOn `  Y )
)
3 cnmptk1.l . . . . . . 7  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
43adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  L  e.  (TopOn `  Z )
)
5 cnmptk1.j . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  X ) )
6 topontop 16992 . . . . . . . . . . 11  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
71, 6syl 16 . . . . . . . . . 10  |-  ( ph  ->  K  e.  Top )
8 topontop 16992 . . . . . . . . . . 11  |-  ( L  e.  (TopOn `  Z
)  ->  L  e.  Top )
93, 8syl 16 . . . . . . . . . 10  |-  ( ph  ->  L  e.  Top )
10 eqid 2437 . . . . . . . . . . 11  |-  ( L  ^ k o  K
)  =  ( L  ^ k o  K
)
1110xkotopon 17633 . . . . . . . . . 10  |-  ( ( K  e.  Top  /\  L  e.  Top )  ->  ( L  ^ k o  K )  e.  (TopOn `  ( K  Cn  L
) ) )
127, 9, 11syl2anc 644 . . . . . . . . 9  |-  ( ph  ->  ( L  ^ k o  K )  e.  (TopOn `  ( K  Cn  L
) ) )
13 cnmptk1.a . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )  e.  ( J  Cn  ( L  ^ k o  K
) ) )
14 cnf2 17314 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  ( L  ^ k o  K
)  e.  (TopOn `  ( K  Cn  L
) )  /\  (
x  e.  X  |->  ( y  e.  Y  |->  A ) )  e.  ( J  Cn  ( L  ^ k o  K
) ) )  -> 
( x  e.  X  |->  ( y  e.  Y  |->  A ) ) : X --> ( K  Cn  L ) )
155, 12, 13, 14syl3anc 1185 . . . . . . . 8  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) ) : X --> ( K  Cn  L ) )
16 eqid 2437 . . . . . . . . 9  |-  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )  =  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )
1716fmpt 5891 . . . . . . . 8  |-  ( A. x  e.  X  (
y  e.  Y  |->  A )  e.  ( K  Cn  L )  <->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) ) : X --> ( K  Cn  L ) )
1815, 17sylibr 205 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  ( y  e.  Y  |->  A )  e.  ( K  Cn  L ) )
1918r19.21bi 2805 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  A )  e.  ( K  Cn  L ) )
20 cnf2 17314 . . . . . 6  |-  ( ( K  e.  (TopOn `  Y )  /\  L  e.  (TopOn `  Z )  /\  ( y  e.  Y  |->  A )  e.  ( K  Cn  L ) )  ->  ( y  e.  Y  |->  A ) : Y --> Z )
212, 4, 19, 20syl3anc 1185 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  A ) : Y --> Z )
22 eqid 2437 . . . . . 6  |-  ( y  e.  Y  |->  A )  =  ( y  e.  Y  |->  A )
2322fmpt 5891 . . . . 5  |-  ( A. y  e.  Y  A  e.  Z  <->  ( y  e.  Y  |->  A ) : Y --> Z )
2421, 23sylibr 205 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  A  e.  Z )
25 eqidd 2438 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  A )  =  ( y  e.  Y  |->  A ) )
26 eqidd 2438 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
z  e.  Z  |->  B )  =  ( z  e.  Z  |->  B ) )
27 cnmptk1.c . . . 4  |-  ( z  =  A  ->  B  =  C )
2824, 25, 26, 27fmptcof 5903 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( z  e.  Z  |->  B )  o.  (
y  e.  Y  |->  A ) )  =  ( y  e.  Y  |->  C ) )
2928mpteq2dva 4296 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( z  e.  Z  |->  B )  o.  ( y  e.  Y  |->  A ) ) )  =  ( x  e.  X  |->  ( y  e.  Y  |->  C ) ) )
30 cnmptk1.b . . . 4  |-  ( ph  ->  ( z  e.  Z  |->  B )  e.  ( L  Cn  M ) )
317, 30xkoco2cn 17691 . . 3  |-  ( ph  ->  ( w  e.  ( K  Cn  L ) 
|->  ( ( z  e.  Z  |->  B )  o.  w ) )  e.  ( ( L  ^ k o  K )  Cn  ( M  ^ k o  K ) ) )
32 coeq2 5032 . . 3  |-  ( w  =  ( y  e.  Y  |->  A )  -> 
( ( z  e.  Z  |->  B )  o.  w )  =  ( ( z  e.  Z  |->  B )  o.  (
y  e.  Y  |->  A ) ) )
335, 13, 12, 31, 32cnmpt11 17696 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( z  e.  Z  |->  B )  o.  ( y  e.  Y  |->  A ) ) )  e.  ( J  Cn  ( M  ^ k o  K ) ) )
3429, 33eqeltrrd 2512 1  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  C ) )  e.  ( J  Cn  ( M  ^ k o  K
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2706    e. cmpt 4267    o. ccom 4883   -->wf 5451   ` cfv 5455  (class class class)co 6082   Topctop 16959  TopOnctopon 16960    Cn ccn 17289    ^ k o cxko 17594
This theorem is referenced by:  cnmpt2k  17721
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-map 7021  df-en 7111  df-dom 7112  df-fin 7114  df-fi 7417  df-rest 13651  df-topgen 13668  df-top 16964  df-bases 16966  df-topon 16967  df-cn 17292  df-cmp 17451  df-xko 17596
  Copyright terms: Public domain W3C validator