MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptk1p Unicode version

Theorem cnmptk1p 17596
Description: The evaluation of a curried function by a one-arg function is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1p.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmptk1p.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmptk1p.l  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
cnmptk1p.n  |-  ( ph  ->  K  e. 𝑛Locally  Comp )
cnmptk1p.a  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )  e.  ( J  Cn  ( L  ^ k o  K
) ) )
cnmptk1p.b  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )
cnmptk1p.c  |-  ( y  =  B  ->  A  =  C )
Assertion
Ref Expression
cnmptk1p  |-  ( ph  ->  ( x  e.  X  |->  C )  e.  ( J  Cn  L ) )
Distinct variable groups:    x, J    x, K    x, L    y, B    y, C    x, y, X    x, Y, y    ph, x, y    y, Z
Allowed substitution hints:    A( x, y)    B( x)    C( x)    J( y)    K( y)    L( y)    Z( x)

Proof of Theorem cnmptk1p
Dummy variables  f 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmptk1p.j . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmptk1p.k . . . . . . 7  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 cnmptk1p.b . . . . . . 7  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )
4 cnf2 17196 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )  ->  ( x  e.  X  |->  B ) : X --> Y )
51, 2, 3, 4syl3anc 1183 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> Y )
6 eqid 2366 . . . . . . 7  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
76fmpt 5792 . . . . . 6  |-  ( A. x  e.  X  B  e.  Y  <->  ( x  e.  X  |->  B ) : X --> Y )
85, 7sylibr 203 . . . . 5  |-  ( ph  ->  A. x  e.  X  B  e.  Y )
98r19.21bi 2726 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  Y )
102adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  K  e.  (TopOn `  Y )
)
11 cnmptk1p.l . . . . . . . 8  |-  ( ph  ->  L  e.  (TopOn `  Z ) )
1211adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  L  e.  (TopOn `  Z )
)
13 cnmptk1p.n . . . . . . . . . . . 12  |-  ( ph  ->  K  e. 𝑛Locally  Comp )
14 nllytop 17416 . . . . . . . . . . . 12  |-  ( K  e. 𝑛Locally 
Comp  ->  K  e.  Top )
1513, 14syl 15 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  Top )
16 topontop 16881 . . . . . . . . . . . 12  |-  ( L  e.  (TopOn `  Z
)  ->  L  e.  Top )
1711, 16syl 15 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  Top )
18 eqid 2366 . . . . . . . . . . . 12  |-  ( L  ^ k o  K
)  =  ( L  ^ k o  K
)
1918xkotopon 17512 . . . . . . . . . . 11  |-  ( ( K  e.  Top  /\  L  e.  Top )  ->  ( L  ^ k o  K )  e.  (TopOn `  ( K  Cn  L
) ) )
2015, 17, 19syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( L  ^ k o  K )  e.  (TopOn `  ( K  Cn  L
) ) )
21 cnmptk1p.a . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )  e.  ( J  Cn  ( L  ^ k o  K
) ) )
22 cnf2 17196 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  ( L  ^ k o  K
)  e.  (TopOn `  ( K  Cn  L
) )  /\  (
x  e.  X  |->  ( y  e.  Y  |->  A ) )  e.  ( J  Cn  ( L  ^ k o  K
) ) )  -> 
( x  e.  X  |->  ( y  e.  Y  |->  A ) ) : X --> ( K  Cn  L ) )
231, 20, 21, 22syl3anc 1183 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) ) : X --> ( K  Cn  L ) )
24 eqid 2366 . . . . . . . . . 10  |-  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )  =  ( x  e.  X  |->  ( y  e.  Y  |->  A ) )
2524fmpt 5792 . . . . . . . . 9  |-  ( A. x  e.  X  (
y  e.  Y  |->  A )  e.  ( K  Cn  L )  <->  ( x  e.  X  |->  ( y  e.  Y  |->  A ) ) : X --> ( K  Cn  L ) )
2623, 25sylibr 203 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  ( y  e.  Y  |->  A )  e.  ( K  Cn  L ) )
2726r19.21bi 2726 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  A )  e.  ( K  Cn  L ) )
28 cnf2 17196 . . . . . . 7  |-  ( ( K  e.  (TopOn `  Y )  /\  L  e.  (TopOn `  Z )  /\  ( y  e.  Y  |->  A )  e.  ( K  Cn  L ) )  ->  ( y  e.  Y  |->  A ) : Y --> Z )
2910, 12, 27, 28syl3anc 1183 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
y  e.  Y  |->  A ) : Y --> Z )
30 eqid 2366 . . . . . . 7  |-  ( y  e.  Y  |->  A )  =  ( y  e.  Y  |->  A )
3130fmpt 5792 . . . . . 6  |-  ( A. y  e.  Y  A  e.  Z  <->  ( y  e.  Y  |->  A ) : Y --> Z )
3229, 31sylibr 203 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  Y  A  e.  Z )
33 cnmptk1p.c . . . . . . 7  |-  ( y  =  B  ->  A  =  C )
3433eleq1d 2432 . . . . . 6  |-  ( y  =  B  ->  ( A  e.  Z  <->  C  e.  Z ) )
3534rspcv 2965 . . . . 5  |-  ( B  e.  Y  ->  ( A. y  e.  Y  A  e.  Z  ->  C  e.  Z ) )
369, 32, 35sylc 56 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  C  e.  Z )
3733, 30fvmptg 5707 . . . 4  |-  ( ( B  e.  Y  /\  C  e.  Z )  ->  ( ( y  e.  Y  |->  A ) `  B )  =  C )
389, 36, 37syl2anc 642 . . 3  |-  ( (
ph  /\  x  e.  X )  ->  (
( y  e.  Y  |->  A ) `  B
)  =  C )
3938mpteq2dva 4208 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( y  e.  Y  |->  A ) `  B ) )  =  ( x  e.  X  |->  C ) )
40 eqid 2366 . . . . 5  |-  ( K  Cn  L )  =  ( K  Cn  L
)
41 toponuni 16882 . . . . . 6  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
422, 41syl 15 . . . . 5  |-  ( ph  ->  Y  =  U. K
)
43 mpt2eq12 6034 . . . . 5  |-  ( ( ( K  Cn  L
)  =  ( K  Cn  L )  /\  Y  =  U. K )  ->  ( f  e.  ( K  Cn  L
) ,  z  e.  Y  |->  ( f `  z ) )  =  ( f  e.  ( K  Cn  L ) ,  z  e.  U. K  |->  ( f `  z ) ) )
4440, 42, 43sylancr 644 . . . 4  |-  ( ph  ->  ( f  e.  ( K  Cn  L ) ,  z  e.  Y  |->  ( f `  z
) )  =  ( f  e.  ( K  Cn  L ) ,  z  e.  U. K  |->  ( f `  z
) ) )
45 eqid 2366 . . . . . 6  |-  U. K  =  U. K
46 eqid 2366 . . . . . 6  |-  ( f  e.  ( K  Cn  L ) ,  z  e.  U. K  |->  ( f `  z ) )  =  ( f  e.  ( K  Cn  L ) ,  z  e.  U. K  |->  ( f `  z ) )
4745, 46xkofvcn 17595 . . . . 5  |-  ( ( K  e. 𝑛Locally  Comp  /\  L  e.  Top )  ->  ( f  e.  ( K  Cn  L ) ,  z  e.  U. K  |->  ( f `  z ) )  e.  ( ( ( L  ^ k o  K )  tX  K
)  Cn  L ) )
4813, 17, 47syl2anc 642 . . . 4  |-  ( ph  ->  ( f  e.  ( K  Cn  L ) ,  z  e.  U. K  |->  ( f `  z ) )  e.  ( ( ( L  ^ k o  K
)  tX  K )  Cn  L ) )
4944, 48eqeltrd 2440 . . 3  |-  ( ph  ->  ( f  e.  ( K  Cn  L ) ,  z  e.  Y  |->  ( f `  z
) )  e.  ( ( ( L  ^ k o  K )  tX  K )  Cn  L
) )
50 fveq1 5631 . . . 4  |-  ( f  =  ( y  e.  Y  |->  A )  -> 
( f `  z
)  =  ( ( y  e.  Y  |->  A ) `  z ) )
51 fveq2 5632 . . . 4  |-  ( z  =  B  ->  (
( y  e.  Y  |->  A ) `  z
)  =  ( ( y  e.  Y  |->  A ) `  B ) )
5250, 51sylan9eq 2418 . . 3  |-  ( ( f  =  ( y  e.  Y  |->  A )  /\  z  =  B )  ->  ( f `  z )  =  ( ( y  e.  Y  |->  A ) `  B
) )
531, 21, 3, 20, 2, 49, 52cnmpt12 17578 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( ( y  e.  Y  |->  A ) `  B ) )  e.  ( J  Cn  L
) )
5439, 53eqeltrrd 2441 1  |-  ( ph  ->  ( x  e.  X  |->  C )  e.  ( J  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1647    e. wcel 1715   A.wral 2628   U.cuni 3929    e. cmpt 4179   -->wf 5354   ` cfv 5358  (class class class)co 5981    e. cmpt2 5983   Topctop 16848  TopOnctopon 16849    Cn ccn 17171   Compccmp 17330  𝑛Locally cnlly 17408    tX ctx 17472    ^ k o cxko 17473
This theorem is referenced by:  xkohmeo  17723
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-map 6917  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-fi 7312  df-rest 13537  df-topgen 13554  df-pt 13555  df-top 16853  df-bases 16855  df-topon 16856  df-ntr 16974  df-nei 17052  df-cn 17174  df-cnp 17175  df-cmp 17331  df-nlly 17410  df-tx 17474  df-xko 17475
  Copyright terms: Public domain W3C validator