MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnntr Unicode version

Theorem cnntr 17261
Description: Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnntr  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    x, Y

Proof of Theorem cnntr
StepHypRef Expression
1 cnf2 17235 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : X --> Y )
213expia 1155 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  F : X
--> Y ) )
3 elpwi 3750 . . . . . . 7  |-  ( x  e.  ~P Y  ->  x  C_  Y )
43adantl 453 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  x  C_  Y )
5 toponuni 16915 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
65ad2antlr 708 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  Y  =  U. K )
74, 6sseqtrd 3327 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  x  C_ 
U. K )
8 eqid 2387 . . . . . . 7  |-  U. K  =  U. K
98cnntri 17257 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  x  C_  U. K )  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )
109expcom 425 . . . . 5  |-  ( x 
C_  U. K  ->  ( F  e.  ( J  Cn  K )  ->  ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
117, 10syl 16 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  x  e.  ~P Y )  ->  ( F  e.  ( J  Cn  K )  ->  ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
1211ralrimdva 2739 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
132, 12jcad 520 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  ->  ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
14 toponss 16917 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  Y )  /\  x  e.  K )  ->  x  C_  Y )
15 vex 2902 . . . . . . . . . . 11  |-  x  e. 
_V
1615elpw 3748 . . . . . . . . . 10  |-  ( x  e.  ~P Y  <->  x  C_  Y
)
1714, 16sylibr 204 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  Y )  /\  x  e.  K )  ->  x  e.  ~P Y )
1817ex 424 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  ( x  e.  K  ->  x  e. 
~P Y ) )
1918ad2antlr 708 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
x  e.  K  ->  x  e.  ~P Y
) )
2019imim1d 71 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ~P Y  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  (
x  e.  K  -> 
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
21 topontop 16914 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2221ad3antrrr 711 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  J  e.  Top )
23 cnvimass 5164 . . . . . . . . . . 11  |-  ( `' F " x ) 
C_  dom  F
24 fdm 5535 . . . . . . . . . . . . 13  |-  ( F : X --> Y  ->  dom  F  =  X )
2524ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  dom  F  =  X )
26 toponuni 16915 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
2726ad3antrrr 711 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  X  =  U. J )
2825, 27eqtrd 2419 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  dom  F  = 
U. J )
2923, 28syl5sseq 3339 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( `' F " x )  C_  U. J )
30 eqid 2387 . . . . . . . . . . 11  |-  U. J  =  U. J
3130ntrss2 17044 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( `' F " x ) 
C_  U. J )  -> 
( ( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x ) )
3222, 29, 31syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( int `  J ) `  ( `' F " x ) )  C_  ( `' F " x ) )
33 eqss 3306 . . . . . . . . . 10  |-  ( ( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( (
( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x )  /\  ( `' F " x ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) )
3433baib 872 . . . . . . . . 9  |-  ( ( ( int `  J
) `  ( `' F " x ) ) 
C_  ( `' F " x )  ->  (
( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( `' F " x )  C_  ( ( int `  J
) `  ( `' F " x ) ) ) )
3532, 34syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( (
( int `  J
) `  ( `' F " x ) )  =  ( `' F " x )  <->  ( `' F " x )  C_  ( ( int `  J
) `  ( `' F " x ) ) ) )
3630isopn3 17053 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( `' F " x ) 
C_  U. J )  -> 
( ( `' F " x )  e.  J  <->  ( ( int `  J
) `  ( `' F " x ) )  =  ( `' F " x ) ) )
3722, 29, 36syl2anc 643 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " x )  e.  J  <->  ( ( int `  J ) `  ( `' F " x ) )  =  ( `' F " x ) ) )
38 topontop 16914 . . . . . . . . . . . 12  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
3938ad3antlr 712 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  K  e.  Top )
40 isopn3i 17069 . . . . . . . . . . 11  |-  ( ( K  e.  Top  /\  x  e.  K )  ->  ( ( int `  K
) `  x )  =  x )
4139, 40sylancom 649 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( int `  K ) `  x )  =  x )
4241imaeq2d 5143 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( `' F " ( ( int `  K ) `  x
) )  =  ( `' F " x ) )
4342sseq1d 3318 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) )  <->  ( `' F " x )  C_  (
( int `  J
) `  ( `' F " x ) ) ) )
4435, 37, 433bitr4rd 278 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y )  /\  x  e.  K
)  ->  ( ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) )  <->  ( `' F " x )  e.  J
) )
4544pm5.74da 669 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  K  ->  ( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  <->  ( x  e.  K  ->  ( `' F " x )  e.  J ) ) )
4620, 45sylibd 206 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  (
( x  e.  ~P Y  ->  ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  (
x  e.  K  -> 
( `' F "
x )  e.  J
) ) )
4746ralimdv2 2729 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( A. x  e.  ~P  Y ( `' F " ( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) )  ->  A. x  e.  K  ( `' F " x )  e.  J ) )
4847imdistanda 675 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  ( F : X --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
49 iscn 17221 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
5048, 49sylibrd 226 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F : X --> Y  /\  A. x  e.  ~P  Y
( `' F "
( ( int `  K
) `  x )
)  C_  ( ( int `  J ) `  ( `' F " x ) ) )  ->  F  e.  ( J  Cn  K
) ) )
5113, 50impbid 184 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  ~P  Y ( `' F " ( ( int `  K ) `
 x ) ) 
C_  ( ( int `  J ) `  ( `' F " x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649    C_ wss 3263   ~Pcpw 3742   U.cuni 3957   `'ccnv 4817   dom cdm 4818   "cima 4821   -->wf 5390   ` cfv 5394  (class class class)co 6020   Topctop 16881  TopOnctopon 16882   intcnt 17004    Cn ccn 17210
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-map 6956  df-top 16886  df-topon 16889  df-ntr 17007  df-cn 17213
  Copyright terms: Public domain W3C validator