MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpart Unicode version

Theorem cnpart 11725
Description: The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map  x 
|->  -u x). (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
cnpart  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( 0  <_ 
( Re `  A
)  /\  ( _i  x.  A )  e/  RR+ )  <->  -.  ( 0  <_  (
Re `  -u A )  /\  ( _i  x.  -u A )  e/  RR+ )
) )

Proof of Theorem cnpart
StepHypRef Expression
1 df-nel 2449 . . . . . 6  |-  ( -u ( _i  x.  A
)  e/  RR+  <->  -.  -u (
_i  x.  A )  e.  RR+ )
2 simpr 447 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( Re `  A )  =  0 )
3 0le0 9827 . . . . . . . 8  |-  0  <_  0
42, 3syl6eqbr 4060 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( Re `  A )  <_  0
)
54biantrurd 494 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( -u (
_i  x.  A )  e/  RR+  <->  ( ( Re
`  A )  <_ 
0  /\  -u ( _i  x.  A )  e/  RR+ ) ) )
61, 5syl5bbr 250 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( -.  -u ( _i  x.  A
)  e.  RR+  <->  ( (
Re `  A )  <_  0  /\  -u (
_i  x.  A )  e/  RR+ ) ) )
76con1bid 320 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( -.  ( ( Re `  A )  <_  0  /\  -u ( _i  x.  A )  e/  RR+ )  <->  -u ( _i  x.  A
)  e.  RR+ )
)
8 ax-icn 8796 . . . . . . . . . . . 12  |-  _i  e.  CC
9 mulcl 8821 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
108, 9mpan 651 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
11 reim0b 11604 . . . . . . . . . . 11  |-  ( ( _i  x.  A )  e.  CC  ->  (
( _i  x.  A
)  e.  RR  <->  ( Im `  ( _i  x.  A
) )  =  0 ) )
1210, 11syl 15 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  e.  RR  <->  ( Im `  ( _i  x.  A
) )  =  0 ) )
13 imre 11593 . . . . . . . . . . . . 13  |-  ( ( _i  x.  A )  e.  CC  ->  (
Im `  ( _i  x.  A ) )  =  ( Re `  ( -u _i  x.  ( _i  x.  A ) ) ) )
1410, 13syl 15 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Im `  ( _i  x.  A ) )  =  ( Re `  ( -u _i  x.  ( _i  x.  A ) ) ) )
15 ine0 9215 . . . . . . . . . . . . . . . . 17  |-  _i  =/=  0
16 divrec2 9441 . . . . . . . . . . . . . . . . 17  |-  ( ( ( _i  x.  A
)  e.  CC  /\  _i  e.  CC  /\  _i  =/=  0 )  ->  (
( _i  x.  A
)  /  _i )  =  ( ( 1  /  _i )  x.  ( _i  x.  A
) ) )
178, 15, 16mp3an23 1269 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  A )  e.  CC  ->  (
( _i  x.  A
)  /  _i )  =  ( ( 1  /  _i )  x.  ( _i  x.  A
) ) )
1810, 17syl 15 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  /  _i )  =  ( ( 1  /  _i )  x.  ( _i  x.  A
) ) )
19 irec 11202 . . . . . . . . . . . . . . . 16  |-  ( 1  /  _i )  = 
-u _i
2019oveq1i 5868 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  _i )  x.  ( _i  x.  A ) )  =  ( -u _i  x.  ( _i  x.  A
) )
2118, 20syl6eq 2331 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  /  _i )  =  ( -u _i  x.  ( _i  x.  A
) ) )
22 divcan3 9448 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  _i  e.  CC  /\  _i  =/=  0 )  ->  (
( _i  x.  A
)  /  _i )  =  A )
238, 15, 22mp3an23 1269 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  /  _i )  =  A )
2421, 23eqtr3d 2317 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( -u _i  x.  ( _i  x.  A ) )  =  A )
2524fveq2d 5529 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  (
Re `  ( -u _i  x.  ( _i  x.  A
) ) )  =  ( Re `  A
) )
2614, 25eqtrd 2315 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
Im `  ( _i  x.  A ) )  =  ( Re `  A
) )
2726eqeq1d 2291 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( Im `  (
_i  x.  A )
)  =  0  <->  (
Re `  A )  =  0 ) )
2812, 27bitrd 244 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  e.  RR  <->  ( Re `  A )  =  0 ) )
2928biimpar 471 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( Re `  A )  =  0 )  -> 
( _i  x.  A
)  e.  RR )
3029adantlr 695 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( _i  x.  A )  e.  RR )
31 mulne0 9410 . . . . . . . . 9  |-  ( ( ( _i  e.  CC  /\  _i  =/=  0 )  /\  ( A  e.  CC  /\  A  =/=  0 ) )  -> 
( _i  x.  A
)  =/=  0 )
328, 15, 31mpanl12 663 . . . . . . . 8  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( _i  x.  A
)  =/=  0 )
3332adantr 451 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( _i  x.  A )  =/=  0
)
34 rpneg 10383 . . . . . . 7  |-  ( ( ( _i  x.  A
)  e.  RR  /\  ( _i  x.  A
)  =/=  0 )  ->  ( ( _i  x.  A )  e.  RR+ 
<->  -.  -u ( _i  x.  A )  e.  RR+ ) )
3530, 33, 34syl2anc 642 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( (
_i  x.  A )  e.  RR+  <->  -.  -u ( _i  x.  A )  e.  RR+ ) )
3635con2bid 319 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( -u (
_i  x.  A )  e.  RR+  <->  -.  ( _i  x.  A )  e.  RR+ ) )
37 df-nel 2449 . . . . 5  |-  ( ( _i  x.  A )  e/  RR+  <->  -.  ( _i  x.  A )  e.  RR+ )
3836, 37syl6bbr 254 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( -u (
_i  x.  A )  e.  RR+  <->  ( _i  x.  A )  e/  RR+ )
)
393, 2syl5breqr 4059 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  0  <_  ( Re `  A ) )
4039biantrurd 494 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( (
_i  x.  A )  e/  RR+  <->  ( 0  <_ 
( Re `  A
)  /\  ( _i  x.  A )  e/  RR+ )
) )
417, 38, 403bitrrd 271 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =  0 )  ->  ( (
0  <_  ( Re `  A )  /\  (
_i  x.  A )  e/  RR+ )  <->  -.  (
( Re `  A
)  <_  0  /\  -u ( _i  x.  A
)  e/  RR+ ) ) )
4228adantr 451 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( _i  x.  A )  e.  RR  <->  ( Re `  A )  =  0 ) )
4342necon3bbid 2480 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -.  ( _i  x.  A )  e.  RR  <->  ( Re `  A )  =/=  0
) )
4443biimpar 471 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  -.  (
_i  x.  A )  e.  RR )
45 rpre 10360 . . . . . . . 8  |-  ( ( _i  x.  A )  e.  RR+  ->  ( _i  x.  A )  e.  RR )
4644, 45nsyl 113 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  -.  (
_i  x.  A )  e.  RR+ )
4746, 37sylibr 203 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( _i  x.  A )  e/  RR+ )
4847biantrud 493 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( 0  <_  ( Re `  A )  <->  ( 0  <_  ( Re `  A )  /\  (
_i  x.  A )  e/  RR+ ) ) )
49 simpr 447 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( Re `  A )  =/=  0
)
5049biantrud 493 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( 0  <_  ( Re `  A )  <->  ( 0  <_  ( Re `  A )  /\  (
Re `  A )  =/=  0 ) ) )
51 0re 8838 . . . . . . . 8  |-  0  e.  RR
52 recl 11595 . . . . . . . 8  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
53 ltlen 8922 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( 0  <  (
Re `  A )  <->  ( 0  <_  ( Re `  A )  /\  (
Re `  A )  =/=  0 ) ) )
54 ltnle 8902 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( 0  <  (
Re `  A )  <->  -.  ( Re `  A
)  <_  0 ) )
5553, 54bitr3d 246 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  ( Re `  A )  e.  RR )  -> 
( ( 0  <_ 
( Re `  A
)  /\  ( Re `  A )  =/=  0
)  <->  -.  ( Re `  A )  <_  0
) )
5651, 52, 55sylancr 644 . . . . . . 7  |-  ( A  e.  CC  ->  (
( 0  <_  (
Re `  A )  /\  ( Re `  A
)  =/=  0 )  <->  -.  ( Re `  A
)  <_  0 ) )
5756ad2antrr 706 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( (
0  <_  ( Re `  A )  /\  (
Re `  A )  =/=  0 )  <->  -.  (
Re `  A )  <_  0 ) )
5850, 57bitrd 244 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( 0  <_  ( Re `  A )  <->  -.  (
Re `  A )  <_  0 ) )
5948, 58bitr3d 246 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( (
0  <_  ( Re `  A )  /\  (
_i  x.  A )  e/  RR+ )  <->  -.  (
Re `  A )  <_  0 ) )
60 renegcl 9110 . . . . . . . . . 10  |-  ( -u ( _i  x.  A
)  e.  RR  ->  -u -u ( _i  x.  A
)  e.  RR )
6110negnegd 9148 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  -u -u (
_i  x.  A )  =  ( _i  x.  A ) )
6261eleq1d 2349 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( -u -u ( _i  x.  A
)  e.  RR  <->  ( _i  x.  A )  e.  RR ) )
6362ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( -u -u (
_i  x.  A )  e.  RR  <->  ( _i  x.  A )  e.  RR ) )
6460, 63syl5ib 210 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( -u (
_i  x.  A )  e.  RR  ->  ( _i  x.  A )  e.  RR ) )
6544, 64mtod 168 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  -.  -u (
_i  x.  A )  e.  RR )
66 rpre 10360 . . . . . . . 8  |-  ( -u ( _i  x.  A
)  e.  RR+  ->  -u ( _i  x.  A
)  e.  RR )
6765, 66nsyl 113 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  -.  -u (
_i  x.  A )  e.  RR+ )
6867, 1sylibr 203 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  -u ( _i  x.  A )  e/  RR+ )
6968biantrud 493 . . . . 5  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( (
Re `  A )  <_  0  <->  ( ( Re
`  A )  <_ 
0  /\  -u ( _i  x.  A )  e/  RR+ ) ) )
7069notbid 285 . . . 4  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( -.  ( Re `  A )  <_  0  <->  -.  (
( Re `  A
)  <_  0  /\  -u ( _i  x.  A
)  e/  RR+ ) ) )
7159, 70bitrd 244 . . 3  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( Re `  A )  =/=  0
)  ->  ( (
0  <_  ( Re `  A )  /\  (
_i  x.  A )  e/  RR+ )  <->  -.  (
( Re `  A
)  <_  0  /\  -u ( _i  x.  A
)  e/  RR+ ) ) )
7241, 71pm2.61dane 2524 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( 0  <_ 
( Re `  A
)  /\  ( _i  x.  A )  e/  RR+ )  <->  -.  ( ( Re `  A )  <_  0  /\  -u ( _i  x.  A )  e/  RR+ )
) )
73 reneg 11610 . . . . . . 7  |-  ( A  e.  CC  ->  (
Re `  -u A )  =  -u ( Re `  A ) )
7473breq2d 4035 . . . . . 6  |-  ( A  e.  CC  ->  (
0  <_  ( Re `  -u A )  <->  0  <_  -u ( Re `  A ) ) )
7552le0neg1d 9344 . . . . . 6  |-  ( A  e.  CC  ->  (
( Re `  A
)  <_  0  <->  0  <_  -u ( Re `  A ) ) )
7674, 75bitr4d 247 . . . . 5  |-  ( A  e.  CC  ->  (
0  <_  ( Re `  -u A )  <->  ( Re `  A )  <_  0
) )
77 mulneg2 9217 . . . . . . 7  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  -u A
)  =  -u (
_i  x.  A )
)
788, 77mpan 651 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  -u A )  =  -u ( _i  x.  A ) )
79 neleq1 2537 . . . . . 6  |-  ( ( _i  x.  -u A
)  =  -u (
_i  x.  A )  ->  ( ( _i  x.  -u A )  e/  RR+  <->  -u ( _i  x.  A )  e/  RR+ ) )
8078, 79syl 15 . . . . 5  |-  ( A  e.  CC  ->  (
( _i  x.  -u A
)  e/  RR+  <->  -u ( _i  x.  A )  e/  RR+ ) )
8176, 80anbi12d 691 . . . 4  |-  ( A  e.  CC  ->  (
( 0  <_  (
Re `  -u A )  /\  ( _i  x.  -u A )  e/  RR+ )  <->  ( ( Re `  A
)  <_  0  /\  -u ( _i  x.  A
)  e/  RR+ ) ) )
8281notbid 285 . . 3  |-  ( A  e.  CC  ->  ( -.  ( 0  <_  (
Re `  -u A )  /\  ( _i  x.  -u A )  e/  RR+ )  <->  -.  ( ( Re `  A )  <_  0  /\  -u ( _i  x.  A )  e/  RR+ )
) )
8382adantr 451 . 2  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( -.  ( 0  <_  ( Re `  -u A )  /\  (
_i  x.  -u A )  e/  RR+ )  <->  -.  (
( Re `  A
)  <_  0  /\  -u ( _i  x.  A
)  e/  RR+ ) ) )
8472, 83bitr4d 247 1  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( ( 0  <_ 
( Re `  A
)  /\  ( _i  x.  A )  e/  RR+ )  <->  -.  ( 0  <_  (
Re `  -u A )  /\  ( _i  x.  -u A )  e/  RR+ )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    e/ wnel 2447   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738   _ici 8739    x. cmul 8742    < clt 8867    <_ cle 8868   -ucneg 9038    / cdiv 9423   RR+crp 10354   Recre 11582   Imcim 11583
This theorem is referenced by:  sqrmo  11737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-2 9804  df-rp 10355  df-cj 11584  df-re 11585  df-im 11586
  Copyright terms: Public domain W3C validator