Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnpcon Structured version   Unicode version

Theorem cnpcon 24922
Description: An image of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypothesis
Ref Expression
cnpcon.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnpcon  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  K  e. PCon )

Proof of Theorem cnpcon
Dummy variables  f 
g  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop2 17310 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
213ad2ant3 981 . 2  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  Top )
3 eqid 2438 . . . . . . . . 9  |-  U. J  =  U. J
43pconcn 24916 . . . . . . . 8  |-  ( ( J  e. PCon  /\  u  e.  U. J  /\  v  e.  U. J )  ->  E. g  e.  (
II  Cn  J )
( ( g ` 
0 )  =  u  /\  ( g ` 
1 )  =  v ) )
543expb 1155 . . . . . . 7  |-  ( ( J  e. PCon  /\  (
u  e.  U. J  /\  v  e.  U. J
) )  ->  E. g  e.  ( II  Cn  J
) ( ( g `
 0 )  =  u  /\  ( g `
 1 )  =  v ) )
653ad2antl1 1120 . . . . . 6  |-  ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e.  U. J  /\  v  e.  U. J
) )  ->  E. g  e.  ( II  Cn  J
) ( ( g `
 0 )  =  u  /\  ( g `
 1 )  =  v ) )
7 simprl 734 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  g  e.  ( II  Cn  J
) )
8 simpll3 999 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  F  e.  ( J  Cn  K
) )
9 cnco 17335 . . . . . . . 8  |-  ( ( g  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  g
)  e.  ( II 
Cn  K ) )
107, 8, 9syl2anc 644 . . . . . . 7  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( F  o.  g )  e.  ( II  Cn  K ) )
11 iiuni 18916 . . . . . . . . . . 11  |-  ( 0 [,] 1 )  = 
U. II
1211, 3cnf 17315 . . . . . . . . . 10  |-  ( g  e.  ( II  Cn  J )  ->  g : ( 0 [,] 1 ) --> U. J
)
137, 12syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  g :
( 0 [,] 1
) --> U. J )
14 0elunit 11020 . . . . . . . . 9  |-  0  e.  ( 0 [,] 1
)
15 fvco3 5803 . . . . . . . . 9  |-  ( ( g : ( 0 [,] 1 ) --> U. J  /\  0  e.  ( 0 [,] 1
) )  ->  (
( F  o.  g
) `  0 )  =  ( F `  ( g `  0
) ) )
1613, 14, 15sylancl 645 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( ( F  o.  g ) `  0 )  =  ( F `  (
g `  0 )
) )
17 simprrl 742 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( g `  0 )  =  u )
1817fveq2d 5735 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( F `  ( g `  0
) )  =  ( F `  u ) )
1916, 18eqtrd 2470 . . . . . . 7  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( ( F  o.  g ) `  0 )  =  ( F `  u
) )
20 1elunit 11021 . . . . . . . . 9  |-  1  e.  ( 0 [,] 1
)
21 fvco3 5803 . . . . . . . . 9  |-  ( ( g : ( 0 [,] 1 ) --> U. J  /\  1  e.  ( 0 [,] 1
) )  ->  (
( F  o.  g
) `  1 )  =  ( F `  ( g `  1
) ) )
2213, 20, 21sylancl 645 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( ( F  o.  g ) `  1 )  =  ( F `  (
g `  1 )
) )
23 simprrr 743 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( g `  1 )  =  v )
2423fveq2d 5735 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( F `  ( g `  1
) )  =  ( F `  v ) )
2522, 24eqtrd 2470 . . . . . . 7  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( ( F  o.  g ) `  1 )  =  ( F `  v
) )
26 fveq1 5730 . . . . . . . . . 10  |-  ( f  =  ( F  o.  g )  ->  (
f `  0 )  =  ( ( F  o.  g ) ` 
0 ) )
2726eqeq1d 2446 . . . . . . . . 9  |-  ( f  =  ( F  o.  g )  ->  (
( f `  0
)  =  ( F `
 u )  <->  ( ( F  o.  g ) `  0 )  =  ( F `  u
) ) )
28 fveq1 5730 . . . . . . . . . 10  |-  ( f  =  ( F  o.  g )  ->  (
f `  1 )  =  ( ( F  o.  g ) ` 
1 ) )
2928eqeq1d 2446 . . . . . . . . 9  |-  ( f  =  ( F  o.  g )  ->  (
( f `  1
)  =  ( F `
 v )  <->  ( ( F  o.  g ) `  1 )  =  ( F `  v
) ) )
3027, 29anbi12d 693 . . . . . . . 8  |-  ( f  =  ( F  o.  g )  ->  (
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  ( F `  v ) )  <->  ( ( ( F  o.  g ) `
 0 )  =  ( F `  u
)  /\  ( ( F  o.  g ) `  1 )  =  ( F `  v
) ) ) )
3130rspcev 3054 . . . . . . 7  |-  ( ( ( F  o.  g
)  e.  ( II 
Cn  K )  /\  ( ( ( F  o.  g ) ` 
0 )  =  ( F `  u )  /\  ( ( F  o.  g ) ` 
1 )  =  ( F `  v ) ) )  ->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  ( F `  v
) ) )
3210, 19, 25, 31syl12anc 1183 . . . . . 6  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  ( F `  v
) ) )
336, 32rexlimddv 2836 . . . . 5  |-  ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e.  U. J  /\  v  e.  U. J
) )  ->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  ( F `  v
) ) )
3433ralrimivva 2800 . . . 4  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  A. u  e.  U. J A. v  e.  U. J E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  ( F `  v
) ) )
35 cnpcon.2 . . . . . . . . 9  |-  Y  = 
U. K
363, 35cnf 17315 . . . . . . . 8  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> Y )
37363ad2ant3 981 . . . . . . 7  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  F : U. J --> Y )
38 forn 5659 . . . . . . . 8  |-  ( F : X -onto-> Y  ->  ran  F  =  Y )
39383ad2ant2 980 . . . . . . 7  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  ran  F  =  Y )
40 dffo2 5660 . . . . . . 7  |-  ( F : U. J -onto-> Y  <->  ( F : U. J --> Y  /\  ran  F  =  Y ) )
4137, 39, 40sylanbrc 647 . . . . . 6  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  F : U. J -onto-> Y )
42 eqeq2 2447 . . . . . . . . 9  |-  ( ( F `  v )  =  y  ->  (
( f `  1
)  =  ( F `
 v )  <->  ( f `  1 )  =  y ) )
4342anbi2d 686 . . . . . . . 8  |-  ( ( F `  v )  =  y  ->  (
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  ( F `  v ) )  <->  ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  y ) ) )
4443rexbidv 2728 . . . . . . 7  |-  ( ( F `  v )  =  y  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  ( F `  v ) )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y ) ) )
4544cbvfo 6025 . . . . . 6  |-  ( F : U. J -onto-> Y  ->  ( A. v  e. 
U. J E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  ( F `  v
) )  <->  A. y  e.  Y  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  y ) ) )
4641, 45syl 16 . . . . 5  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  ( A. v  e.  U. J E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  ( F `  v ) )  <->  A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y ) ) )
4746ralbidv 2727 . . . 4  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  ( A. u  e.  U. J A. v  e.  U. J E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  ( F `  v ) )  <->  A. u  e.  U. J A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y ) ) )
4834, 47mpbid 203 . . 3  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  A. u  e.  U. J A. y  e.  Y  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  y ) )
49 eqeq2 2447 . . . . . . . 8  |-  ( ( F `  u )  =  x  ->  (
( f `  0
)  =  ( F `
 u )  <->  ( f `  0 )  =  x ) )
5049anbi1d 687 . . . . . . 7  |-  ( ( F `  u )  =  x  ->  (
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y )  <->  ( ( f `
 0 )  =  x  /\  ( f `
 1 )  =  y ) ) )
5150rexbidv 2728 . . . . . 6  |-  ( ( F `  u )  =  x  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
5251ralbidv 2727 . . . . 5  |-  ( ( F `  u )  =  x  ->  ( A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y )  <->  A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
5352cbvfo 6025 . . . 4  |-  ( F : U. J -onto-> Y  ->  ( A. u  e. 
U. J A. y  e.  Y  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  y )  <->  A. x  e.  Y  A. y  e.  Y  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  x  /\  ( f `
 1 )  =  y ) ) )
5441, 53syl 16 . . 3  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  ( A. u  e.  U. J A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y )  <->  A. x  e.  Y  A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
5548, 54mpbid 203 . 2  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  A. x  e.  Y  A. y  e.  Y  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  x  /\  ( f `
 1 )  =  y ) )
5635ispcon 24915 . 2  |-  ( K  e. PCon 
<->  ( K  e.  Top  /\ 
A. x  e.  Y  A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
572, 55, 56sylanbrc 647 1  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  K  e. PCon )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   U.cuni 4017   ran crn 4882    o. ccom 4885   -->wf 5453   -onto->wfo 5455   ` cfv 5457  (class class class)co 6084   0cc0 8995   1c1 8996   [,]cicc 10924   Topctop 16963    Cn ccn 17293   IIcii 18910  PConcpcon 24911
This theorem is referenced by:  qtoppcon  24928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-icc 10928  df-seq 11329  df-exp 11388  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-topgen 13672  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-top 16968  df-bases 16970  df-topon 16971  df-cn 17296  df-ii 18912  df-pcon 24913
  Copyright terms: Public domain W3C validator