Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnpcon Unicode version

Theorem cnpcon 24878
Description: An image of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypothesis
Ref Expression
cnpcon.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnpcon  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  K  e. PCon )

Proof of Theorem cnpcon
Dummy variables  f 
g  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop2 17267 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
213ad2ant3 980 . 2  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  Top )
3 eqid 2412 . . . . . . . . 9  |-  U. J  =  U. J
43pconcn 24872 . . . . . . . 8  |-  ( ( J  e. PCon  /\  u  e.  U. J  /\  v  e.  U. J )  ->  E. g  e.  (
II  Cn  J )
( ( g ` 
0 )  =  u  /\  ( g ` 
1 )  =  v ) )
543expb 1154 . . . . . . 7  |-  ( ( J  e. PCon  /\  (
u  e.  U. J  /\  v  e.  U. J
) )  ->  E. g  e.  ( II  Cn  J
) ( ( g `
 0 )  =  u  /\  ( g `
 1 )  =  v ) )
653ad2antl1 1119 . . . . . 6  |-  ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e.  U. J  /\  v  e.  U. J
) )  ->  E. g  e.  ( II  Cn  J
) ( ( g `
 0 )  =  u  /\  ( g `
 1 )  =  v ) )
7 simprl 733 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  g  e.  ( II  Cn  J
) )
8 simpll3 998 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  F  e.  ( J  Cn  K
) )
9 cnco 17292 . . . . . . . 8  |-  ( ( g  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  g
)  e.  ( II 
Cn  K ) )
107, 8, 9syl2anc 643 . . . . . . 7  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( F  o.  g )  e.  ( II  Cn  K ) )
11 iiuni 18872 . . . . . . . . . . 11  |-  ( 0 [,] 1 )  = 
U. II
1211, 3cnf 17272 . . . . . . . . . 10  |-  ( g  e.  ( II  Cn  J )  ->  g : ( 0 [,] 1 ) --> U. J
)
137, 12syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  g :
( 0 [,] 1
) --> U. J )
14 0elunit 10979 . . . . . . . . 9  |-  0  e.  ( 0 [,] 1
)
15 fvco3 5767 . . . . . . . . 9  |-  ( ( g : ( 0 [,] 1 ) --> U. J  /\  0  e.  ( 0 [,] 1
) )  ->  (
( F  o.  g
) `  0 )  =  ( F `  ( g `  0
) ) )
1613, 14, 15sylancl 644 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( ( F  o.  g ) `  0 )  =  ( F `  (
g `  0 )
) )
17 simprrl 741 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( g `  0 )  =  u )
1817fveq2d 5699 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( F `  ( g `  0
) )  =  ( F `  u ) )
1916, 18eqtrd 2444 . . . . . . 7  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( ( F  o.  g ) `  0 )  =  ( F `  u
) )
20 1elunit 10980 . . . . . . . . 9  |-  1  e.  ( 0 [,] 1
)
21 fvco3 5767 . . . . . . . . 9  |-  ( ( g : ( 0 [,] 1 ) --> U. J  /\  1  e.  ( 0 [,] 1
) )  ->  (
( F  o.  g
) `  1 )  =  ( F `  ( g `  1
) ) )
2213, 20, 21sylancl 644 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( ( F  o.  g ) `  1 )  =  ( F `  (
g `  1 )
) )
23 simprrr 742 . . . . . . . . 9  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( g `  1 )  =  v )
2423fveq2d 5699 . . . . . . . 8  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( F `  ( g `  1
) )  =  ( F `  v ) )
2522, 24eqtrd 2444 . . . . . . 7  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  ( ( F  o.  g ) `  1 )  =  ( F `  v
) )
26 fveq1 5694 . . . . . . . . . 10  |-  ( f  =  ( F  o.  g )  ->  (
f `  0 )  =  ( ( F  o.  g ) ` 
0 ) )
2726eqeq1d 2420 . . . . . . . . 9  |-  ( f  =  ( F  o.  g )  ->  (
( f `  0
)  =  ( F `
 u )  <->  ( ( F  o.  g ) `  0 )  =  ( F `  u
) ) )
28 fveq1 5694 . . . . . . . . . 10  |-  ( f  =  ( F  o.  g )  ->  (
f `  1 )  =  ( ( F  o.  g ) ` 
1 ) )
2928eqeq1d 2420 . . . . . . . . 9  |-  ( f  =  ( F  o.  g )  ->  (
( f `  1
)  =  ( F `
 v )  <->  ( ( F  o.  g ) `  1 )  =  ( F `  v
) ) )
3027, 29anbi12d 692 . . . . . . . 8  |-  ( f  =  ( F  o.  g )  ->  (
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  ( F `  v ) )  <->  ( ( ( F  o.  g ) `
 0 )  =  ( F `  u
)  /\  ( ( F  o.  g ) `  1 )  =  ( F `  v
) ) ) )
3130rspcev 3020 . . . . . . 7  |-  ( ( ( F  o.  g
)  e.  ( II 
Cn  K )  /\  ( ( ( F  o.  g ) ` 
0 )  =  ( F `  u )  /\  ( ( F  o.  g ) ` 
1 )  =  ( F `  v ) ) )  ->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  ( F `  v
) ) )
3210, 19, 25, 31syl12anc 1182 . . . . . 6  |-  ( ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e. 
U. J  /\  v  e.  U. J ) )  /\  ( g  e.  ( II  Cn  J
)  /\  ( (
g `  0 )  =  u  /\  (
g `  1 )  =  v ) ) )  ->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  ( F `  v
) ) )
336, 32rexlimddv 2802 . . . . 5  |-  ( ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( u  e.  U. J  /\  v  e.  U. J
) )  ->  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  ( F `  v
) ) )
3433ralrimivva 2766 . . . 4  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  A. u  e.  U. J A. v  e.  U. J E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  ( F `  v
) ) )
35 cnpcon.2 . . . . . . . . 9  |-  Y  = 
U. K
363, 35cnf 17272 . . . . . . . 8  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> Y )
37363ad2ant3 980 . . . . . . 7  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  F : U. J --> Y )
38 forn 5623 . . . . . . . 8  |-  ( F : X -onto-> Y  ->  ran  F  =  Y )
39383ad2ant2 979 . . . . . . 7  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  ran  F  =  Y )
40 dffo2 5624 . . . . . . 7  |-  ( F : U. J -onto-> Y  <->  ( F : U. J --> Y  /\  ran  F  =  Y ) )
4137, 39, 40sylanbrc 646 . . . . . 6  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  F : U. J -onto-> Y )
42 eqeq2 2421 . . . . . . . . 9  |-  ( ( F `  v )  =  y  ->  (
( f `  1
)  =  ( F `
 v )  <->  ( f `  1 )  =  y ) )
4342anbi2d 685 . . . . . . . 8  |-  ( ( F `  v )  =  y  ->  (
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  ( F `  v ) )  <->  ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  y ) ) )
4443rexbidv 2695 . . . . . . 7  |-  ( ( F `  v )  =  y  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  ( F `  v ) )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y ) ) )
4544cbvfo 5989 . . . . . 6  |-  ( F : U. J -onto-> Y  ->  ( A. v  e. 
U. J E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  ( F `  v
) )  <->  A. y  e.  Y  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  y ) ) )
4641, 45syl 16 . . . . 5  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  ( A. v  e.  U. J E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  ( F `  v ) )  <->  A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y ) ) )
4746ralbidv 2694 . . . 4  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  ( A. u  e.  U. J A. v  e.  U. J E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  ( F `  v ) )  <->  A. u  e.  U. J A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y ) ) )
4834, 47mpbid 202 . . 3  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  A. u  e.  U. J A. y  e.  Y  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  y ) )
49 eqeq2 2421 . . . . . . . 8  |-  ( ( F `  u )  =  x  ->  (
( f `  0
)  =  ( F `
 u )  <->  ( f `  0 )  =  x ) )
5049anbi1d 686 . . . . . . 7  |-  ( ( F `  u )  =  x  ->  (
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y )  <->  ( ( f `
 0 )  =  x  /\  ( f `
 1 )  =  y ) ) )
5150rexbidv 2695 . . . . . 6  |-  ( ( F `  u )  =  x  ->  ( E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y )  <->  E. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
5251ralbidv 2694 . . . . 5  |-  ( ( F `  u )  =  x  ->  ( A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y )  <->  A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
5352cbvfo 5989 . . . 4  |-  ( F : U. J -onto-> Y  ->  ( A. u  e. 
U. J A. y  e.  Y  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  ( F `  u
)  /\  ( f `  1 )  =  y )  <->  A. x  e.  Y  A. y  e.  Y  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  x  /\  ( f `
 1 )  =  y ) ) )
5441, 53syl 16 . . 3  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  ( A. u  e.  U. J A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  ( F `  u )  /\  ( f ` 
1 )  =  y )  <->  A. x  e.  Y  A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
5548, 54mpbid 202 . 2  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  A. x  e.  Y  A. y  e.  Y  E. f  e.  ( II  Cn  K
) ( ( f `
 0 )  =  x  /\  ( f `
 1 )  =  y ) )
5635ispcon 24871 . 2  |-  ( K  e. PCon 
<->  ( K  e.  Top  /\ 
A. x  e.  Y  A. y  e.  Y  E. f  e.  (
II  Cn  K )
( ( f ` 
0 )  =  x  /\  ( f ` 
1 )  =  y ) ) )
572, 55, 56sylanbrc 646 1  |-  ( ( J  e. PCon  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K
) )  ->  K  e. PCon )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2674   E.wrex 2675   U.cuni 3983   ran crn 4846    o. ccom 4849   -->wf 5417   -onto->wfo 5419   ` cfv 5421  (class class class)co 6048   0cc0 8954   1c1 8955   [,]cicc 10883   Topctop 16921    Cn ccn 17250   IIcii 18866  PConcpcon 24867
This theorem is referenced by:  qtoppcon  24884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031  ax-pre-sup 9032
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-sup 7412  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-div 9642  df-nn 9965  df-2 10022  df-3 10023  df-n0 10186  df-z 10247  df-uz 10453  df-q 10539  df-rp 10577  df-xneg 10674  df-xadd 10675  df-xmul 10676  df-icc 10887  df-seq 11287  df-exp 11346  df-cj 11867  df-re 11868  df-im 11869  df-sqr 12003  df-abs 12004  df-topgen 13630  df-psmet 16657  df-xmet 16658  df-met 16659  df-bl 16660  df-mopn 16661  df-top 16926  df-bases 16928  df-topon 16929  df-cn 17253  df-ii 18868  df-pcon 24869
  Copyright terms: Public domain W3C validator