MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpfcf Structured version   Unicode version

Theorem cnpfcf 18074
Description: A function  F is continuous at point  A iff  F respects cluster points there. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpfcf  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) ) ) )
Distinct variable groups:    A, f    f, F    f, J    f, K    f, X    f, Y

Proof of Theorem cnpfcf
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnpf2 17315 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  A )
)  ->  F : X
--> Y )
213expa 1154 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : X
--> Y )
323adantl3 1116 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : X
--> Y )
4 topontop 16992 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
5 cnpfcfi 18073 . . . . . . . . 9  |-  ( ( K  e.  Top  /\  A  e.  ( J  fClus  f )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )
653com23 1160 . . . . . . . 8  |-  ( ( K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  A )  /\  A  e.  ( J  fClus  f ) )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )
763expia 1156 . . . . . . 7  |-  ( ( K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  A ) )  -> 
( A  e.  ( J  fClus  f )  ->  ( F `  A
)  e.  ( ( K  fClusf  f ) `  F ) ) )
84, 7sylan 459 . . . . . 6  |-  ( ( K  e.  (TopOn `  Y )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) )
98ralrimivw 2791 . . . . 5  |-  ( ( K  e.  (TopOn `  Y )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) )
1093ad2antl2 1121 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) )
113, 10jca 520 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F : X --> Y  /\  A. f  e.  ( Fil `  X ) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) ) )
1211ex 425 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  ->  ( F : X
--> Y  /\  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) ) ) )
13 simplrl 738 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
g  e.  ( Fil `  X ) )
14 filfbas 17881 . . . . . . . . . . . . . 14  |-  ( g  e.  ( Fil `  X
)  ->  g  e.  ( fBas `  X )
)
1513, 14syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
g  e.  ( fBas `  X ) )
16 simprl 734 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  ->  h  e.  ( Fil `  Y ) )
17 simpllr 737 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  ->  F : X --> Y )
18 simprr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
( ( Y  FilMap  F ) `  g ) 
C_  h )
1915, 16, 17, 18fmfnfm 17991 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  ->  E. f  e.  ( Fil `  X ) ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) )
20 r19.29 2847 . . . . . . . . . . . . 13  |-  ( ( A. f  e.  ( Fil `  X ) ( A  e.  ( J  fClus  f )  ->  ( F `  A
)  e.  ( ( K  fClusf  f ) `  F ) )  /\  E. f  e.  ( Fil `  X ) ( g 
C_  f  /\  h  =  ( ( Y 
FilMap  F ) `  f
) ) )  ->  E. f  e.  ( Fil `  X ) ( ( A  e.  ( J  fClus  f )  ->  ( F `  A
)  e.  ( ( K  fClusf  f ) `  F ) )  /\  ( g  C_  f  /\  h  =  (
( Y  FilMap  F ) `
 f ) ) ) )
21 flimfcls 18059 . . . . . . . . . . . . . . . . . . 19  |-  ( J 
fLim  f )  C_  ( J  fClus  f )
22 simpll1 997 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  J  e.  (TopOn `  X )
)
2322ad2antrr 708 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  J  e.  (TopOn `  X
) )
24 simprl 734 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
f  e.  ( Fil `  X ) )
25 simprrl 742 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
g  C_  f )
26 flimss2 18005 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  (TopOn `  X )  /\  f  e.  ( Fil `  X
)  /\  g  C_  f )  ->  ( J  fLim  g )  C_  ( J  fLim  f ) )
2723, 24, 25, 26syl3anc 1185 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( J  fLim  g
)  C_  ( J  fLim  f ) )
28 simprr 735 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  A  e.  ( J  fLim  g
) )
2928ad2antrr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  A  e.  ( J  fLim  g ) )
3027, 29sseldd 3350 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  A  e.  ( J  fLim  f ) )
3121, 30sseldi 3347 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  A  e.  ( J  fClus  f ) )
32 simpll2 998 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  K  e.  (TopOn `  Y )
)
3332ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  K  e.  (TopOn `  Y
) )
34 simplr 733 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  F : X --> Y )
3534ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  F : X --> Y )
36 fcfval 18066 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( K  e.  (TopOn `  Y )  /\  f  e.  ( Fil `  X
)  /\  F : X
--> Y )  ->  (
( K  fClusf  f ) `
 F )  =  ( K  fClus  ( ( Y  FilMap  F ) `  f ) ) )
3733, 24, 35, 36syl3anc 1185 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( ( K  fClusf  f ) `  F )  =  ( K  fClus  ( ( Y  FilMap  F ) `
 f ) ) )
38 simprrr 743 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  ->  h  =  ( ( Y  FilMap  F ) `  f ) )
3938oveq2d 6098 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( K  fClus  h )  =  ( K  fClus  ( ( Y  FilMap  F ) `
 f ) ) )
4037, 39eqtr4d 2472 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( ( K  fClusf  f ) `  F )  =  ( K  fClus  h ) )
4140eleq2d 2504 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( ( F `  A )  e.  ( ( K  fClusf  f ) `
 F )  <->  ( F `  A )  e.  ( K  fClus  h )
) )
4241biimpd 200 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( ( F `  A )  e.  ( ( K  fClusf  f ) `
 F )  -> 
( F `  A
)  e.  ( K 
fClus  h ) ) )
4331, 42embantd 53 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  ( f  e.  ( Fil `  X
)  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) ) ) )  -> 
( ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) )
4443expr 600 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  f  e.  ( Fil `  X ) )  ->  ( (
g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) )  -> 
( ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) ) )
4544com23 75 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  f  e.  ( Fil `  X ) )  ->  ( ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  ( (
g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `  f ) )  -> 
( F `  A
)  e.  ( K 
fClus  h ) ) ) )
4645imp3a 422 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  /\  (
g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g
) ) )  /\  ( h  e.  ( Fil `  Y )  /\  ( ( Y  FilMap  F ) `  g ) 
C_  h ) )  /\  f  e.  ( Fil `  X ) )  ->  ( (
( A  e.  ( J  fClus  f )  ->  ( F `  A
)  e.  ( ( K  fClusf  f ) `  F ) )  /\  ( g  C_  f  /\  h  =  (
( Y  FilMap  F ) `
 f ) ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) )
4746rexlimdva 2831 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
( E. f  e.  ( Fil `  X
) ( ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  /\  ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `
 f ) ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) )
4820, 47syl5 31 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
( ( A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  /\  E. f  e.  ( Fil `  X
) ( g  C_  f  /\  h  =  ( ( Y  FilMap  F ) `
 f ) ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) )
4919, 48mpan2d 657 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  (
h  e.  ( Fil `  Y )  /\  (
( Y  FilMap  F ) `
 g )  C_  h ) )  -> 
( A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) )
5049expr 600 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  h  e.  ( Fil `  Y
) )  ->  (
( ( Y  FilMap  F ) `  g ) 
C_  h  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  ( F `  A )  e.  ( K  fClus  h )
) ) )
5150com23 75 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X
)  /\  A  e.  ( J  fLim  g ) ) )  /\  h  e.  ( Fil `  Y
) )  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  ( (
( Y  FilMap  F ) `
 g )  C_  h  ->  ( F `  A )  e.  ( K  fClus  h )
) ) )
5251ralrimdva 2797 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  A. h  e.  ( Fil `  Y
) ( ( ( Y  FilMap  F ) `  g )  C_  h  ->  ( F `  A
)  e.  ( K 
fClus  h ) ) ) )
53 toponmax 16994 . . . . . . . . . . . . 13  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
5432, 53syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  Y  e.  K )
55 simprl 734 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  g  e.  ( Fil `  X
) )
5655, 14syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  g  e.  ( fBas `  X
) )
57 fmfil 17977 . . . . . . . . . . . 12  |-  ( ( Y  e.  K  /\  g  e.  ( fBas `  X )  /\  F : X --> Y )  -> 
( ( Y  FilMap  F ) `  g )  e.  ( Fil `  Y
) )
5854, 56, 34, 57syl3anc 1185 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( Y  FilMap  F ) `
 g )  e.  ( Fil `  Y
) )
59 toponuni 16993 . . . . . . . . . . . . 13  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
6032, 59syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  Y  =  U. K )
6160fveq2d 5733 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  ( Fil `  Y )  =  ( Fil `  U. K ) )
6258, 61eleqtrd 2513 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( Y  FilMap  F ) `
 g )  e.  ( Fil `  U. K ) )
63 eqid 2437 . . . . . . . . . . 11  |-  U. K  =  U. K
6463flimfnfcls 18061 . . . . . . . . . 10  |-  ( ( ( Y  FilMap  F ) `
 g )  e.  ( Fil `  U. K )  ->  (
( F `  A
)  e.  ( K 
fLim  ( ( Y 
FilMap  F ) `  g
) )  <->  A. h  e.  ( Fil `  U. K ) ( ( ( Y  FilMap  F ) `
 g )  C_  h  ->  ( F `  A )  e.  ( K  fClus  h )
) ) )
6562, 64syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( F `  A
)  e.  ( K 
fLim  ( ( Y 
FilMap  F ) `  g
) )  <->  A. h  e.  ( Fil `  U. K ) ( ( ( Y  FilMap  F ) `
 g )  C_  h  ->  ( F `  A )  e.  ( K  fClus  h )
) ) )
66 flfval 18023 . . . . . . . . . . 11  |-  ( ( K  e.  (TopOn `  Y )  /\  g  e.  ( Fil `  X
)  /\  F : X
--> Y )  ->  (
( K  fLimf  g ) `
 F )  =  ( K  fLim  (
( Y  FilMap  F ) `
 g ) ) )
6732, 55, 34, 66syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( K  fLimf  g ) `
 F )  =  ( K  fLim  (
( Y  FilMap  F ) `
 g ) ) )
6867eleq2d 2504 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( F `  A
)  e.  ( ( K  fLimf  g ) `  F )  <->  ( F `  A )  e.  ( K  fLim  ( ( Y  FilMap  F ) `  g ) ) ) )
6961raleqdv 2911 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  ( A. h  e.  ( Fil `  Y ) ( ( ( Y  FilMap  F ) `  g ) 
C_  h  ->  ( F `  A )  e.  ( K  fClus  h ) )  <->  A. h  e.  ( Fil `  U. K
) ( ( ( Y  FilMap  F ) `  g )  C_  h  ->  ( F `  A
)  e.  ( K 
fClus  h ) ) ) )
7065, 68, 693bitr4d 278 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  (
( F `  A
)  e.  ( ( K  fLimf  g ) `  F )  <->  A. h  e.  ( Fil `  Y
) ( ( ( Y  FilMap  F ) `  g )  C_  h  ->  ( F `  A
)  e.  ( K 
fClus  h ) ) ) )
7152, 70sylibrd 227 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  ( g  e.  ( Fil `  X )  /\  A  e.  ( J  fLim  g )
) )  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) )
7271expr 600 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  g  e.  ( Fil `  X ) )  -> 
( A  e.  ( J  fLim  g )  ->  ( A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) ) )
7372com23 75 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X )  /\  F : X --> Y )  /\  g  e.  ( Fil `  X ) )  -> 
( A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) )  ->  ( A  e.  ( J  fLim  g
)  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) ) )
7473ralrimdva 2797 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  /\  F : X
--> Y )  ->  ( A. f  e.  ( Fil `  X ) ( A  e.  ( J 
fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `  F ) )  ->  A. g  e.  ( Fil `  X
) ( A  e.  ( J  fLim  g
)  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) ) )
7574imdistanda 676 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( ( F : X --> Y  /\  A. f  e.  ( Fil `  X ) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) )  ->  ( F : X --> Y  /\  A. g  e.  ( Fil `  X ) ( A  e.  ( J  fLim  g )  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) ) ) )
76 cnpflf 18034 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. g  e.  ( Fil `  X
) ( A  e.  ( J  fLim  g
)  ->  ( F `  A )  e.  ( ( K  fLimf  g ) `
 F ) ) ) ) )
7775, 76sylibrd 227 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( ( F : X --> Y  /\  A. f  e.  ( Fil `  X ) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) )  ->  F  e.  ( ( J  CnP  K ) `  A ) ) )
7812, 77impbid 185 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  A  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  A )  <-> 
( F : X --> Y  /\  A. f  e.  ( Fil `  X
) ( A  e.  ( J  fClus  f )  ->  ( F `  A )  e.  ( ( K  fClusf  f ) `
 F ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2706   E.wrex 2707    C_ wss 3321   U.cuni 4016   -->wf 5451   ` cfv 5455  (class class class)co 6082   fBascfbas 16690   Topctop 16959  TopOnctopon 16960    CnP ccnp 17290   Filcfil 17878    FilMap cfm 17966    fLim cflim 17967    fLimf cflf 17968    fClus cfcls 17969    fClusf cfcf 17970
This theorem is referenced by:  cnfcf  18075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-recs 6634  df-rdg 6669  df-1o 6725  df-oadd 6729  df-er 6906  df-map 7021  df-en 7111  df-fin 7114  df-fi 7417  df-fbas 16700  df-fg 16701  df-top 16964  df-topon 16967  df-cld 17084  df-ntr 17085  df-cls 17086  df-nei 17163  df-cnp 17293  df-fil 17879  df-fm 17971  df-flim 17972  df-flf 17973  df-fcls 17974  df-fcf 17975
  Copyright terms: Public domain W3C validator