MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflfi Unicode version

Theorem cnpflfi 17694
Description: Forward direction of cnpflf 17696. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpflfi  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) )

Proof of Theorem cnpflfi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . . 5  |-  U. J  =  U. J
2 eqid 2283 . . . . 5  |-  U. K  =  U. K
31, 2cnpf 16977 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  A )  ->  F : U. J --> U. K
)
43adantl 452 . . 3  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : U. J --> U. K )
51flimelbas 17663 . . . 4  |-  ( A  e.  ( J  fLim  L )  ->  A  e.  U. J )
65adantr 451 . . 3  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A  e.  U. J )
7 ffvelrn 5663 . . 3  |-  ( ( F : U. J --> U. K  /\  A  e. 
U. J )  -> 
( F `  A
)  e.  U. K
)
84, 6, 7syl2anc 642 . 2  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  U. K )
9 simplr 731 . . . . . 6  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  ->  F  e.  ( ( J  CnP  K ) `  A ) )
10 simprl 732 . . . . . 6  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  ->  x  e.  K )
11 simprr 733 . . . . . 6  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  -> 
( F `  A
)  e.  x )
12 cnpimaex 16986 . . . . . 6  |-  ( ( F  e.  ( ( J  CnP  K ) `
 A )  /\  x  e.  K  /\  ( F `  A )  e.  x )  ->  E. y  e.  J  ( A  e.  y  /\  ( F " y
)  C_  x )
)
139, 10, 11, 12syl3anc 1182 . . . . 5  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  ->  E. y  e.  J  ( A  e.  y  /\  ( F " y
)  C_  x )
)
14 anass 630 . . . . . . 7  |-  ( ( ( y  e.  J  /\  A  e.  y
)  /\  ( F " y )  C_  x
)  <->  ( y  e.  J  /\  ( A  e.  y  /\  ( F " y )  C_  x ) ) )
15 simpl 443 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A  e.  ( J  fLim  L ) )
16 flimtop 17660 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( J  fLim  L )  ->  J  e.  Top )
1716adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  J  e.  Top )
181toptopon 16671 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1917, 18sylib 188 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  J  e.  (TopOn `  U. J ) )
201flimfil 17664 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( J  fLim  L )  ->  L  e.  ( Fil `  U. J
) )
2120adantr 451 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  L  e.  ( Fil `  U. J
) )
22 flimopn 17670 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  U. J )  /\  L  e.  ( Fil `  U. J ) )  -> 
( A  e.  ( J  fLim  L )  <->  ( A  e.  U. J  /\  A. y  e.  J  ( A  e.  y  ->  y  e.  L ) ) ) )
2319, 21, 22syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( A  e.  ( J  fLim  L
)  <->  ( A  e. 
U. J  /\  A. y  e.  J  ( A  e.  y  ->  y  e.  L ) ) ) )
2415, 23mpbid 201 . . . . . . . . . . . 12  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( A  e.  U. J  /\  A. y  e.  J  ( A  e.  y  ->  y  e.  L ) ) )
2524simprd 449 . . . . . . . . . . 11  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A. y  e.  J  ( A  e.  y  ->  y  e.  L ) )
2625adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  ->  A. y  e.  J  ( A  e.  y  ->  y  e.  L ) )
2726r19.21bi 2641 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( J  fLim  L
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  /\  y  e.  J )  ->  ( A  e.  y  ->  y  e.  L
) )
2827expimpd 586 . . . . . . . 8  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  -> 
( ( y  e.  J  /\  A  e.  y )  ->  y  e.  L ) )
2928anim1d 547 . . . . . . 7  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  -> 
( ( ( y  e.  J  /\  A  e.  y )  /\  ( F " y )  C_  x )  ->  (
y  e.  L  /\  ( F " y ) 
C_  x ) ) )
3014, 29syl5bir 209 . . . . . 6  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  -> 
( ( y  e.  J  /\  ( A  e.  y  /\  ( F " y )  C_  x ) )  -> 
( y  e.  L  /\  ( F " y
)  C_  x )
) )
3130reximdv2 2652 . . . . 5  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  -> 
( E. y  e.  J  ( A  e.  y  /\  ( F
" y )  C_  x )  ->  E. y  e.  L  ( F " y )  C_  x
) )
3213, 31mpd 14 . . . 4  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  ->  E. y  e.  L  ( F " y ) 
C_  x )
3332expr 598 . . 3  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  x  e.  K )  ->  (
( F `  A
)  e.  x  ->  E. y  e.  L  ( F " y ) 
C_  x ) )
3433ralrimiva 2626 . 2  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A. x  e.  K  ( ( F `  A )  e.  x  ->  E. y  e.  L  ( F " y )  C_  x
) )
35 cnptop2 16973 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  A )  ->  K  e.  Top )
3635adantl 452 . . . 4  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  K  e.  Top )
372toptopon 16671 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3836, 37sylib 188 . . 3  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  K  e.  (TopOn `  U. K ) )
39 isflf 17688 . . 3  |-  ( ( K  e.  (TopOn `  U. K )  /\  L  e.  ( Fil `  U. J )  /\  F : U. J --> U. K
)  ->  ( ( F `  A )  e.  ( ( K  fLimf  L ) `  F )  <-> 
( ( F `  A )  e.  U. K  /\  A. x  e.  K  ( ( F `
 A )  e.  x  ->  E. y  e.  L  ( F " y )  C_  x
) ) ) )
4038, 21, 4, 39syl3anc 1182 . 2  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( ( F `  A )  e.  ( ( K  fLimf  L ) `  F )  <-> 
( ( F `  A )  e.  U. K  /\  A. x  e.  K  ( ( F `
 A )  e.  x  ->  E. y  e.  L  ( F " y )  C_  x
) ) ) )
418, 34, 40mpbir2and 888 1  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   U.cuni 3827   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858   Topctop 16631  TopOnctopon 16632    CnP ccnp 16955   Filcfil 17540    fLim cflim 17629    fLimf cflf 17630
This theorem is referenced by:  cnpflf2  17695  cnpflf  17696  flfcnp  17699  cnpfcfi  17735  cnpflf4  25564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-top 16636  df-topon 16639  df-ntr 16757  df-nei 16835  df-cnp 16958  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635
  Copyright terms: Public domain W3C validator