MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpimaex Unicode version

Theorem cnpimaex 17002
Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
cnpimaex  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  A  e.  K  /\  ( F `  P )  e.  A )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  A )
)
Distinct variable groups:    x, A    x, F    x, J    x, K    x, P

Proof of Theorem cnpimaex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . . . 6  |-  U. J  =  U. J
2 eqid 2296 . . . . . 6  |-  U. K  =  U. K
31, 2iscnp2 16985 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e. 
U. J )  /\  ( F : U. J --> U. K  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
43simprbi 450 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( F : U. J --> U. K  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
54simprd 449 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )
6 eleq2 2357 . . . . 5  |-  ( y  =  A  ->  (
( F `  P
)  e.  y  <->  ( F `  P )  e.  A
) )
7 sseq2 3213 . . . . . . 7  |-  ( y  =  A  ->  (
( F " x
)  C_  y  <->  ( F " x )  C_  A
) )
87anbi2d 684 . . . . . 6  |-  ( y  =  A  ->  (
( P  e.  x  /\  ( F " x
)  C_  y )  <->  ( P  e.  x  /\  ( F " x ) 
C_  A ) ) )
98rexbidv 2577 . . . . 5  |-  ( y  =  A  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  A ) ) )
106, 9imbi12d 311 . . . 4  |-  ( y  =  A  ->  (
( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  <->  ( ( F `
 P )  e.  A  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) ) ) )
1110rspccv 2894 . . 3  |-  ( A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  ( A  e.  K  ->  ( ( F `  P )  e.  A  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) ) ) )
125, 11syl 15 . 2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( A  e.  K  ->  ( ( F `  P
)  e.  A  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  A )
) ) )
13123imp 1145 1  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  A  e.  K  /\  ( F `  P )  e.  A )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165   U.cuni 3843   "cima 4708   -->wf 5267   ` cfv 5271  (class class class)co 5874   Topctop 16647    CnP ccnp 16971
This theorem is referenced by:  cnpnei  17009  cnpco  17012  cncnp  17025  cnpresti  17032  lmcnp  17048  txcnpi  17318  txcnp  17330  ptcnplem  17331  cnpflfi  17710  ghmcnp  17813  xrlimcnp  20279  iscnp4  25666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-map 6790  df-top 16652  df-topon 16655  df-cnp 16974
  Copyright terms: Public domain W3C validator