MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpresti Unicode version

Theorem cnpresti 17276
Description: One direction of cnprest 17277 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Hypothesis
Ref Expression
cnprest.1  |-  X  = 
U. J
Assertion
Ref Expression
cnpresti  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
)

Proof of Theorem cnpresti
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnprest.1 . . . . 5  |-  X  = 
U. J
2 eqid 2389 . . . . 5  |-  U. K  =  U. K
31, 2cnpf 17235 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  F : X --> U. K )
433ad2ant3 980 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X --> U. K
)
5 simp1 957 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  C_  X )
6 fssres 5552 . . 3  |-  ( ( F : X --> U. K  /\  A  C_  X )  ->  ( F  |`  A ) : A --> U. K )
74, 5, 6syl2anc 643 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A ) : A --> U. K
)
8 simpl2 961 . . . . . 6  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  P  e.  A )
9 fvres 5687 . . . . . 6  |-  ( P  e.  A  ->  (
( F  |`  A ) `
 P )  =  ( F `  P
) )
108, 9syl 16 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F  |`  A ) `
 P )  =  ( F `  P
) )
1110eleq1d 2455 . . . 4  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( ( F  |`  A ) `  P
)  e.  y  <->  ( F `  P )  e.  y ) )
12 cnpimaex 17244 . . . . . . 7  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  y  e.  K  /\  ( F `  P )  e.  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)
13123expia 1155 . . . . . 6  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  y  e.  K )  ->  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )
14133ad2antl3 1121 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )
15 idd 22 . . . . . . . . . . 11  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  P  e.  x ) )
16 simp2 958 . . . . . . . . . . 11  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  A )
1715, 16jctird 529 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  ( P  e.  x  /\  P  e.  A
) ) )
18 elin 3475 . . . . . . . . . 10  |-  ( P  e.  ( x  i^i 
A )  <->  ( P  e.  x  /\  P  e.  A ) )
1917, 18syl6ibr 219 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  P  e.  ( x  i^i  A ) ) )
20 inss1 3506 . . . . . . . . . . . 12  |-  ( x  i^i  A )  C_  x
21 imass2 5182 . . . . . . . . . . . 12  |-  ( ( x  i^i  A ) 
C_  x  ->  ( F " ( x  i^i 
A ) )  C_  ( F " x ) )
2220, 21ax-mp 8 . . . . . . . . . . 11  |-  ( F
" ( x  i^i 
A ) )  C_  ( F " x )
23 id 20 . . . . . . . . . . 11  |-  ( ( F " x ) 
C_  y  ->  ( F " x )  C_  y )
2422, 23syl5ss 3304 . . . . . . . . . 10  |-  ( ( F " x ) 
C_  y  ->  ( F " ( x  i^i 
A ) )  C_  y )
2524a1i 11 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( F "
x )  C_  y  ->  ( F " (
x  i^i  A )
)  C_  y )
)
2619, 25anim12d 547 . . . . . . . 8  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( P  e.  x  /\  ( F
" x )  C_  y )  ->  ( P  e.  ( x  i^i  A )  /\  ( F " ( x  i^i 
A ) )  C_  y ) ) )
2726reximdv 2762 . . . . . . 7  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  ->  E. x  e.  J  ( P  e.  ( x  i^i  A
)  /\  ( F " ( x  i^i  A
) )  C_  y
) ) )
28 vex 2904 . . . . . . . . . 10  |-  x  e. 
_V
2928inex1 4287 . . . . . . . . 9  |-  ( x  i^i  A )  e. 
_V
3029a1i 11 . . . . . . . 8  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  x  e.  J )  ->  (
x  i^i  A )  e.  _V )
31 cnptop1 17230 . . . . . . . . . 10  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
32313ad2ant3 980 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  Top )
33 uniexg 4648 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  U. J  e.  _V )
3432, 33syl 16 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  U. J  e.  _V )
355, 1syl6sseq 3339 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  C_  U. J )
3634, 35ssexd 4293 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  e.  _V )
37 elrest 13584 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
3832, 36, 37syl2anc 643 . . . . . . . 8  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
39 simpr 448 . . . . . . . . . 10  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  z  =  ( x  i^i  A ) )
4039eleq2d 2456 . . . . . . . . 9  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( P  e.  z  <->  P  e.  (
x  i^i  A )
) )
4139imaeq2d 5145 . . . . . . . . . . 11  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( F  |`  A ) "
z )  =  ( ( F  |`  A )
" ( x  i^i 
A ) ) )
42 inss2 3507 . . . . . . . . . . . 12  |-  ( x  i^i  A )  C_  A
43 resima2 5121 . . . . . . . . . . . 12  |-  ( ( x  i^i  A ) 
C_  A  ->  (
( F  |`  A )
" ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
) )
4442, 43ax-mp 8 . . . . . . . . . . 11  |-  ( ( F  |`  A ) " ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
)
4541, 44syl6eq 2437 . . . . . . . . . 10  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( F  |`  A ) "
z )  =  ( F " ( x  i^i  A ) ) )
4645sseq1d 3320 . . . . . . . . 9  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( (
( F  |`  A )
" z )  C_  y 
<->  ( F " (
x  i^i  A )
)  C_  y )
)
4740, 46anbi12d 692 . . . . . . . 8  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( P  e.  z  /\  ( ( F  |`  A ) " z
)  C_  y )  <->  ( P  e.  ( x  i^i  A )  /\  ( F " ( x  i^i  A ) ) 
C_  y ) ) )
4830, 38, 47rexxfr2d 4682 . . . . . . 7  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y )  <->  E. x  e.  J  ( P  e.  ( x  i^i  A
)  /\  ( F " ( x  i^i  A
) )  C_  y
) ) )
4927, 48sylibrd 226 . . . . . 6  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5049adantr 452 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5114, 50syld 42 . . . 4  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5211, 51sylbid 207 . . 3  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5352ralrimiva 2734 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A. y  e.  K  ( ( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
541toptopon 16923 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
5532, 54sylib 189 . . . 4  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  (TopOn `  X
) )
56 resttopon 17149 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
5755, 5, 56syl2anc 643 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( Jt  A )  e.  (TopOn `  A ) )
58 cnptop2 17231 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
59583ad2ant3 980 . . . 4  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  Top )
602toptopon 16923 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
6159, 60sylib 189 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  (TopOn `  U. K ) )
62 iscnp 17225 . . 3  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  U. K )  /\  P  e.  A
)  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `
 P )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
6357, 61, 16, 62syl3anc 1184 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `  P )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
647, 53, 63mpbir2and 889 1  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2651   E.wrex 2652   _Vcvv 2901    i^i cin 3264    C_ wss 3265   U.cuni 3959    |` cres 4822   "cima 4823   -->wf 5392   ` cfv 5396  (class class class)co 6022   ↾t crest 13577   Topctop 16883  TopOnctopon 16884    CnP ccnp 17213
This theorem is referenced by:  efrlim  20677  cvmlift2lem11  24781
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-recs 6571  df-rdg 6606  df-oadd 6666  df-er 6843  df-map 6958  df-en 7048  df-fin 7051  df-fi 7353  df-rest 13579  df-topgen 13596  df-top 16888  df-bases 16890  df-topon 16891  df-cnp 17216
  Copyright terms: Public domain W3C validator