MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpresti Structured version   Unicode version

Theorem cnpresti 17357
Description: One direction of cnprest 17358 under the weaker condition that the point is in the subset rather than the interior of the subset. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 1-May-2015.)
Hypothesis
Ref Expression
cnprest.1  |-  X  = 
U. J
Assertion
Ref Expression
cnpresti  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
)

Proof of Theorem cnpresti
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnprest.1 . . . . 5  |-  X  = 
U. J
2 eqid 2438 . . . . 5  |-  U. K  =  U. K
31, 2cnpf 17316 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  F : X --> U. K )
433ad2ant3 981 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X --> U. K
)
5 simp1 958 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  C_  X )
6 fssres 5613 . . 3  |-  ( ( F : X --> U. K  /\  A  C_  X )  ->  ( F  |`  A ) : A --> U. K )
74, 5, 6syl2anc 644 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A ) : A --> U. K
)
8 simpl2 962 . . . . . 6  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  P  e.  A )
9 fvres 5748 . . . . . 6  |-  ( P  e.  A  ->  (
( F  |`  A ) `
 P )  =  ( F `  P
) )
108, 9syl 16 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F  |`  A ) `
 P )  =  ( F `  P
) )
1110eleq1d 2504 . . . 4  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( ( F  |`  A ) `  P
)  e.  y  <->  ( F `  P )  e.  y ) )
12 cnpimaex 17325 . . . . . . 7  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  y  e.  K  /\  ( F `  P )  e.  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)
13123expia 1156 . . . . . 6  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  y  e.  K )  ->  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )
14133ad2antl3 1122 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) )
15 idd 23 . . . . . . . . . . 11  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  P  e.  x ) )
16 simp2 959 . . . . . . . . . . 11  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  A )
1715, 16jctird 530 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  ( P  e.  x  /\  P  e.  A
) ) )
18 elin 3532 . . . . . . . . . 10  |-  ( P  e.  ( x  i^i 
A )  <->  ( P  e.  x  /\  P  e.  A ) )
1917, 18syl6ibr 220 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( P  e.  x  ->  P  e.  ( x  i^i  A ) ) )
20 inss1 3563 . . . . . . . . . . . 12  |-  ( x  i^i  A )  C_  x
21 imass2 5243 . . . . . . . . . . . 12  |-  ( ( x  i^i  A ) 
C_  x  ->  ( F " ( x  i^i 
A ) )  C_  ( F " x ) )
2220, 21ax-mp 5 . . . . . . . . . . 11  |-  ( F
" ( x  i^i 
A ) )  C_  ( F " x )
23 id 21 . . . . . . . . . . 11  |-  ( ( F " x ) 
C_  y  ->  ( F " x )  C_  y )
2422, 23syl5ss 3361 . . . . . . . . . 10  |-  ( ( F " x ) 
C_  y  ->  ( F " ( x  i^i 
A ) )  C_  y )
2524a1i 11 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( F "
x )  C_  y  ->  ( F " (
x  i^i  A )
)  C_  y )
)
2619, 25anim12d 548 . . . . . . . 8  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( P  e.  x  /\  ( F
" x )  C_  y )  ->  ( P  e.  ( x  i^i  A )  /\  ( F " ( x  i^i 
A ) )  C_  y ) ) )
2726reximdv 2819 . . . . . . 7  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  ->  E. x  e.  J  ( P  e.  ( x  i^i  A
)  /\  ( F " ( x  i^i  A
) )  C_  y
) ) )
28 vex 2961 . . . . . . . . . 10  |-  x  e. 
_V
2928inex1 4347 . . . . . . . . 9  |-  ( x  i^i  A )  e. 
_V
3029a1i 11 . . . . . . . 8  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  x  e.  J )  ->  (
x  i^i  A )  e.  _V )
31 cnptop1 17311 . . . . . . . . . 10  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
32313ad2ant3 981 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  Top )
33 uniexg 4709 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  U. J  e.  _V )
3432, 33syl 16 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  U. J  e.  _V )
355, 1syl6sseq 3396 . . . . . . . . . 10  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  C_  U. J )
3634, 35ssexd 4353 . . . . . . . . 9  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A  e.  _V )
37 elrest 13660 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
3832, 36, 37syl2anc 644 . . . . . . . 8  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( z  e.  ( Jt  A )  <->  E. x  e.  J  z  =  ( x  i^i  A ) ) )
39 simpr 449 . . . . . . . . . 10  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  z  =  ( x  i^i  A ) )
4039eleq2d 2505 . . . . . . . . 9  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( P  e.  z  <->  P  e.  (
x  i^i  A )
) )
4139imaeq2d 5206 . . . . . . . . . . 11  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( F  |`  A ) "
z )  =  ( ( F  |`  A )
" ( x  i^i 
A ) ) )
42 inss2 3564 . . . . . . . . . . . 12  |-  ( x  i^i  A )  C_  A
43 resima2 5182 . . . . . . . . . . . 12  |-  ( ( x  i^i  A ) 
C_  A  ->  (
( F  |`  A )
" ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
) )
4442, 43ax-mp 5 . . . . . . . . . . 11  |-  ( ( F  |`  A ) " ( x  i^i 
A ) )  =  ( F " (
x  i^i  A )
)
4541, 44syl6eq 2486 . . . . . . . . . 10  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( F  |`  A ) "
z )  =  ( F " ( x  i^i  A ) ) )
4645sseq1d 3377 . . . . . . . . 9  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( (
( F  |`  A )
" z )  C_  y 
<->  ( F " (
x  i^i  A )
)  C_  y )
)
4740, 46anbi12d 693 . . . . . . . 8  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  z  =  ( x  i^i  A ) )  ->  ( ( P  e.  z  /\  ( ( F  |`  A ) " z
)  C_  y )  <->  ( P  e.  ( x  i^i  A )  /\  ( F " ( x  i^i  A ) ) 
C_  y ) ) )
4830, 38, 47rexxfr2d 4743 . . . . . . 7  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y )  <->  E. x  e.  J  ( P  e.  ( x  i^i  A
)  /\  ( F " ( x  i^i  A
) )  C_  y
) ) )
4927, 48sylibrd 227 . . . . . 6  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  y )  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5049adantr 453 . . . . 5  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5114, 50syld 43 . . . 4  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( F `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5211, 51sylbid 208 . . 3  |-  ( ( ( A  C_  X  /\  P  e.  A  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  K )  ->  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
5352ralrimiva 2791 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A. y  e.  K  ( ( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) )
541toptopon 17003 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
5532, 54sylib 190 . . . 4  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  (TopOn `  X
) )
56 resttopon 17230 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
5755, 5, 56syl2anc 644 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( Jt  A )  e.  (TopOn `  A ) )
58 cnptop2 17312 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
59583ad2ant3 981 . . . 4  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  Top )
602toptopon 17003 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
6159, 60sylib 190 . . 3  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  (TopOn `  U. K ) )
62 iscnp 17306 . . 3  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  K  e.  (TopOn `  U. K )  /\  P  e.  A
)  ->  ( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `
 P )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
6357, 61, 16, 62syl3anc 1185 . 2  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( ( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K ) `  P )  <->  ( ( F  |`  A ) : A --> U. K  /\  A. y  e.  K  (
( ( F  |`  A ) `  P
)  e.  y  ->  E. z  e.  ( Jt  A ) ( P  e.  z  /\  (
( F  |`  A )
" z )  C_  y ) ) ) ) )
647, 53, 63mpbir2and 890 1  |-  ( ( A  C_  X  /\  P  e.  A  /\  F  e.  ( ( J  CnP  K ) `  P ) )  -> 
( F  |`  A )  e.  ( ( ( Jt  A )  CnP  K
) `  P )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   _Vcvv 2958    i^i cin 3321    C_ wss 3322   U.cuni 4017    |` cres 4883   "cima 4884   -->wf 5453   ` cfv 5457  (class class class)co 6084   ↾t crest 13653   Topctop 16963  TopOnctopon 16964    CnP ccnp 17294
This theorem is referenced by:  efrlim  20813  cvmlift2lem11  25005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-recs 6636  df-rdg 6671  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-fin 7116  df-fi 7419  df-rest 13655  df-topgen 13672  df-top 16968  df-bases 16970  df-topon 16971  df-cnp 17297
  Copyright terms: Public domain W3C validator