MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpval Structured version   Unicode version

Theorem cnpval 17302
Description: The set of all functions from topology  J to topology  K that are continuous at a point  P. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
cnpval  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
Distinct variable groups:    x, f,
y, J    f, K, x, y    f, X, x, y    P, f, x, y   
f, Y, x, y

Proof of Theorem cnpval
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 cnpfval 17300 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } ) )
21fveq1d 5732 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( J  CnP  K ) `  P )  =  ( ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } ) `  P
) )
3 fveq2 5730 . . . . . . . 8  |-  ( v  =  P  ->  (
f `  v )  =  ( f `  P ) )
43eleq1d 2504 . . . . . . 7  |-  ( v  =  P  ->  (
( f `  v
)  e.  y  <->  ( f `  P )  e.  y ) )
5 eleq1 2498 . . . . . . . . 9  |-  ( v  =  P  ->  (
v  e.  x  <->  P  e.  x ) )
65anbi1d 687 . . . . . . . 8  |-  ( v  =  P  ->  (
( v  e.  x  /\  ( f " x
)  C_  y )  <->  ( P  e.  x  /\  ( f " x
)  C_  y )
) )
76rexbidv 2728 . . . . . . 7  |-  ( v  =  P  ->  ( E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) )
84, 7imbi12d 313 . . . . . 6  |-  ( v  =  P  ->  (
( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
)  <->  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) ) )
98ralbidv 2727 . . . . 5  |-  ( v  =  P  ->  ( A. y  e.  K  ( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
)  <->  A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) ) )
109rabbidv 2950 . . . 4  |-  ( v  =  P  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) }  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
11 eqid 2438 . . . 4  |-  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } )  =  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } )
12 ovex 6108 . . . . 5  |-  ( Y  ^m  X )  e. 
_V
1312rabex 4356 . . . 4  |-  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) }  e.  _V
1410, 11, 13fvmpt 5808 . . 3  |-  ( P  e.  X  ->  (
( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } ) `  P
)  =  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
152, 14sylan9eq 2490 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  (
( J  CnP  K
) `  P )  =  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) } )
16153impa 1149 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   {crab 2711    C_ wss 3322    e. cmpt 4268   "cima 4883   ` cfv 5456  (class class class)co 6083    ^m cmap 7020  TopOnctopon 16961    CnP ccnp 17291
This theorem is referenced by:  iscnp  17303
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-top 16965  df-topon 16968  df-cnp 17294
  Copyright terms: Public domain W3C validator