MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpval Unicode version

Theorem cnpval 16966
Description: The set of all functions from topology  J to topology  K that are continuous at a point  P. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
cnpval  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
Distinct variable groups:    x, f,
y, J    f, K, x, y    f, X, x, y    P, f, x, y   
f, Y, x, y

Proof of Theorem cnpval
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 cnpfval 16964 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } ) )
21fveq1d 5527 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( J  CnP  K ) `  P )  =  ( ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } ) `  P
) )
3 fveq2 5525 . . . . . . . 8  |-  ( v  =  P  ->  (
f `  v )  =  ( f `  P ) )
43eleq1d 2349 . . . . . . 7  |-  ( v  =  P  ->  (
( f `  v
)  e.  y  <->  ( f `  P )  e.  y ) )
5 eleq1 2343 . . . . . . . . 9  |-  ( v  =  P  ->  (
v  e.  x  <->  P  e.  x ) )
65anbi1d 685 . . . . . . . 8  |-  ( v  =  P  ->  (
( v  e.  x  /\  ( f " x
)  C_  y )  <->  ( P  e.  x  /\  ( f " x
)  C_  y )
) )
76rexbidv 2564 . . . . . . 7  |-  ( v  =  P  ->  ( E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) )
84, 7imbi12d 311 . . . . . 6  |-  ( v  =  P  ->  (
( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
)  <->  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) ) )
98ralbidv 2563 . . . . 5  |-  ( v  =  P  ->  ( A. y  e.  K  ( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
)  <->  A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) ) )
109rabbidv 2780 . . . 4  |-  ( v  =  P  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) }  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
11 eqid 2283 . . . 4  |-  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } )  =  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } )
12 ovex 5883 . . . . 5  |-  ( Y  ^m  X )  e. 
_V
1312rabex 4165 . . . 4  |-  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) }  e.  _V
1410, 11, 13fvmpt 5602 . . 3  |-  ( P  e.  X  ->  (
( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } ) `  P
)  =  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
152, 14sylan9eq 2335 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  (
( J  CnP  K
) `  P )  =  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) } )
16153impa 1146 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152    e. cmpt 4077   "cima 4692   ` cfv 5255  (class class class)co 5858    ^m cmap 6772  TopOnctopon 16632    CnP ccnp 16955
This theorem is referenced by:  iscnp  16967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-top 16636  df-topon 16639  df-cnp 16958
  Copyright terms: Public domain W3C validator