Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnpwstotbnd Structured version   Unicode version

Theorem cnpwstotbnd 26460
Description: A subset of  A ^
I, where  A  C_  CC, is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
cnpwstotbnd.y  |-  Y  =  ( (flds  A )  ^s  I )
cnpwstotbnd.d  |-  D  =  ( ( dist `  Y
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
cnpwstotbnd  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  ( D  e.  ( TotBnd `  X )  <->  D  e.  ( Bnd `  X ) ) )

Proof of Theorem cnpwstotbnd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . 3  |-  ( (Scalar `  (flds  A ) ) X_s ( I  X.  {
(flds  A
) } ) )  =  ( (Scalar `  (flds  A
) ) X_s ( I  X.  {
(flds  A
) } ) )
2 eqid 2435 . . 3  |-  ( Base `  ( (Scalar `  (flds  A )
) X_s ( I  X.  {
(flds  A
) } ) ) )  =  ( Base `  ( (Scalar `  (flds  A )
) X_s ( I  X.  {
(flds  A
) } ) ) )
3 eqid 2435 . . 3  |-  ( Base `  ( ( I  X.  { (flds  A ) } ) `  x ) )  =  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )
4 eqid 2435 . . 3  |-  ( (
dist `  ( (
I  X.  { (flds  A ) } ) `  x
) )  |`  (
( Base `  ( (
I  X.  { (flds  A ) } ) `  x
) )  X.  ( Base `  ( ( I  X.  { (flds  A ) } ) `
 x ) ) ) )  =  ( ( dist `  (
( I  X.  {
(flds  A
) } ) `  x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )
5 eqid 2435 . . 3  |-  ( dist `  ( (Scalar `  (flds  A )
) X_s ( I  X.  {
(flds  A
) } ) ) )  =  ( dist `  ( (Scalar `  (flds  A )
) X_s ( I  X.  {
(flds  A
) } ) ) )
6 fvex 5734 . . . 4  |-  (Scalar `  (flds  A
) )  e.  _V
76a1i 11 . . 3  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  (Scalar `  (flds  A ) )  e.  _V )
8 simpr 448 . . 3  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  I  e.  Fin )
9 ovex 6098 . . . 4  |-  (flds  A )  e.  _V
10 fnconstg 5623 . . . 4  |-  ( (flds  A )  e.  _V  ->  (
I  X.  { (flds  A ) } )  Fn  I
)
119, 10mp1i 12 . . 3  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  (
I  X.  { (flds  A ) } )  Fn  I
)
12 eqid 2435 . . 3  |-  ( (
dist `  ( (Scalar `  (flds  A ) ) X_s ( I  X.  {
(flds  A
) } ) ) )  |`  ( X  X.  X ) )  =  ( ( dist `  (
(Scalar `  (flds  A ) ) X_s (
I  X.  { (flds  A ) } ) ) )  |`  ( X  X.  X
) )
13 cnfldms 18800 . . . . . 6  |-fld  e.  MetSp
14 cnex 9061 . . . . . . . 8  |-  CC  e.  _V
1514ssex 4339 . . . . . . 7  |-  ( A 
C_  CC  ->  A  e. 
_V )
1615ad2antrr 707 . . . . . 6  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  A  e.  _V )
17 ressms 18546 . . . . . 6  |-  ( (fld  e. 
MetSp  /\  A  e.  _V )  ->  (flds  A )  e.  MetSp )
1813, 16, 17sylancr 645 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  (flds  A )  e.  MetSp )
19 eqid 2435 . . . . . 6  |-  ( Base `  (flds  A ) )  =  (
Base `  (flds  A ) )
20 eqid 2435 . . . . . 6  |-  ( (
dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  =  ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )
2119, 20msmet 18477 . . . . 5  |-  ( (flds  A )  e.  MetSp  ->  ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  e.  ( Met `  ( Base `  (flds  A ) ) ) )
2218, 21syl 16 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  e.  ( Met `  ( Base `  (flds  A ) ) ) )
239fvconst2 5939 . . . . . . 7  |-  ( x  e.  I  ->  (
( I  X.  {
(flds  A
) } ) `  x )  =  (flds  A ) )
2423adantl 453 . . . . . 6  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
I  X.  { (flds  A ) } ) `  x
)  =  (flds  A ) )
2524fveq2d 5724 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( dist `  ( ( I  X.  { (flds  A ) } ) `  x ) )  =  ( dist `  (flds  A )
) )
2624fveq2d 5724 . . . . . 6  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( Base `  ( ( I  X.  { (flds  A ) } ) `  x ) )  =  ( Base `  (flds  A )
) )
2726, 26xpeq12d 4895 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( ( Base `  ( ( I  X.  { (flds  A ) } ) `
 x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) )  =  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )
2825, 27reseq12d 5139 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( ( dist `  ( ( I  X.  { (flds  A ) } ) `
 x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  =  ( (
dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) ) )
2926fveq2d 5724 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( Met `  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) )  =  ( Met `  ( Base `  (flds  A ) ) ) )
3022, 28, 293eltr4d 2516 . . 3  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( ( dist `  ( ( I  X.  { (flds  A ) } ) `
 x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  e.  ( Met `  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )
31 totbndbnd 26452 . . . . . 6  |-  ( ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  -> 
( ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) )
32 eqid 2435 . . . . . . . . . . 11  |-  (flds  A )  =  (flds  A )
33 cnfldbas 16697 . . . . . . . . . . 11  |-  CC  =  ( Base ` fld )
3432, 33ressbas2 13510 . . . . . . . . . 10  |-  ( A 
C_  CC  ->  A  =  ( Base `  (flds  A )
) )
3534ad2antrr 707 . . . . . . . . 9  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  A  =  ( Base `  (flds  A ) ) )
3635fveq2d 5724 . . . . . . . 8  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( Met `  A )  =  ( Met `  ( Base `  (flds  A ) ) ) )
3722, 36eleqtrrd 2512 . . . . . . 7  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  e.  ( Met `  A
) )
38 eqid 2435 . . . . . . . . 9  |-  ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  =  ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )
3938bnd2lem 26454 . . . . . . . 8  |-  ( ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  e.  ( Met `  A
)  /\  ( (
( dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) )  ->  y  C_  A )
4039ex 424 . . . . . . 7  |-  ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  e.  ( Met `  A
)  ->  ( (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y )  ->  y  C_  A
) )
4137, 40syl 16 . . . . . 6  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y )  ->  y  C_  A
) )
4231, 41syl5 30 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  -> 
y  C_  A )
)
43 eqid 2435 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( y  X.  y
) )  =  ( ( abs  o.  -  )  |`  ( y  X.  y ) )
4443cntotbnd 26459 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  |`  ( y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( ( abs  o.  -  )  |`  ( y  X.  y ) )  e.  ( Bnd `  y
) )
4544a1i 11 . . . . . . 7  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( abs  o.  -  )  |`  ( y  X.  y ) )  e.  ( TotBnd `  y
)  <->  ( ( abs 
o.  -  )  |`  (
y  X.  y ) )  e.  ( Bnd `  y ) ) )
4635sseq2d 3368 . . . . . . . . . . . 12  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( y  C_  A  <->  y  C_  ( Base `  (flds  A ) ) ) )
4746biimpa 471 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  y  C_  ( Base `  (flds  A )
) )
48 xpss12 4973 . . . . . . . . . . 11  |-  ( ( y  C_  ( Base `  (flds  A ) )  /\  y  C_  ( Base `  (flds  A )
) )  ->  (
y  X.  y ) 
C_  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )
4947, 47, 48syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
y  X.  y ) 
C_  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )
50 resabs1 5167 . . . . . . . . . 10  |-  ( ( y  X.  y ) 
C_  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) )  -> 
( ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  |`  ( y  X.  y
) )  =  ( ( dist `  (flds  A )
)  |`  ( y  X.  y ) ) )
5149, 50syl 16 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  =  ( ( dist `  (flds  A )
)  |`  ( y  X.  y ) ) )
5216adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  A  e.  _V )
53 cnfldds 16703 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  =  ( dist ` fld )
5432, 53ressds 13631 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ( abs  o.  -  )  =  ( dist `  (flds  A )
) )
5552, 54syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  ( abs  o.  -  )  =  ( dist `  (flds  A )
) )
5655reseq1d 5137 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( abs  o.  -  )  |`  ( y  X.  y
) )  =  ( ( dist `  (flds  A )
)  |`  ( y  X.  y ) ) )
5751, 56eqtr4d 2470 . . . . . . . 8  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  =  ( ( abs  o.  -  )  |`  ( y  X.  y ) ) )
5857eleq1d 2501 . . . . . . 7  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( ( abs  o.  -  )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y ) ) )
5957eleq1d 2501 . . . . . . 7  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y )  <-> 
( ( abs  o.  -  )  |`  ( y  X.  y ) )  e.  ( Bnd `  y
) ) )
6045, 58, 593bitr4d 277 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  /\  y  C_  A )  ->  (
( ( ( dist `  (flds  A ) )  |`  (
( Base `  (flds  A ) )  X.  ( Base `  (flds  A )
) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( (
( dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )
6160ex 424 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( y  C_  A  ->  ( (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( (
( dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) ) )
6242, 41, 61pm5.21ndd 344 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( (
( dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )
6328reseq1d 5137 . . . . 5  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( dist `  ( (
I  X.  { (flds  A ) } ) `  x
) )  |`  (
( Base `  ( (
I  X.  { (flds  A ) } ) `  x
) )  X.  ( Base `  ( ( I  X.  { (flds  A ) } ) `
 x ) ) ) )  |`  (
y  X.  y ) )  =  ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) ) )
6463eleq1d 2501 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (
( I  X.  {
(flds  A
) } ) `  x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  |`  ( y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( ( ( dist `  (flds  A )
)  |`  ( ( Base `  (flds  A ) )  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  (
TotBnd `  y ) ) )
6563eleq1d 2501 . . . 4  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (
( I  X.  {
(flds  A
) } ) `  x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  |`  ( y  X.  y ) )  e.  ( Bnd `  y
)  <->  ( ( (
dist `  (flds  A ) )  |`  ( ( Base `  (flds  A )
)  X.  ( Base `  (flds  A ) ) ) )  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )
6662, 64, 653bitr4d 277 . . 3  |-  ( ( ( A  C_  CC  /\  I  e.  Fin )  /\  x  e.  I
)  ->  ( (
( ( dist `  (
( I  X.  {
(flds  A
) } ) `  x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  |`  ( y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( ( ( dist `  (
( I  X.  {
(flds  A
) } ) `  x ) )  |`  ( ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) )  X.  ( Base `  (
( I  X.  {
(flds  A
) } ) `  x ) ) ) )  |`  ( y  X.  y ) )  e.  ( Bnd `  y
) ) )
671, 2, 3, 4, 5, 7, 8, 11, 12, 30, 66prdsbnd2 26458 . 2  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  (
( ( dist `  (
(Scalar `  (flds  A ) ) X_s (
I  X.  { (flds  A ) } ) ) )  |`  ( X  X.  X
) )  e.  (
TotBnd `  X )  <->  ( ( dist `  ( (Scalar `  (flds  A
) ) X_s ( I  X.  {
(flds  A
) } ) ) )  |`  ( X  X.  X ) )  e.  ( Bnd `  X
) ) )
68 cnpwstotbnd.d . . . 4  |-  D  =  ( ( dist `  Y
)  |`  ( X  X.  X ) )
69 cnpwstotbnd.y . . . . . . . 8  |-  Y  =  ( (flds  A )  ^s  I )
70 eqid 2435 . . . . . . . 8  |-  (Scalar `  (flds  A
) )  =  (Scalar `  (flds  A ) )
7169, 70pwsval 13698 . . . . . . 7  |-  ( ( (flds  A )  e.  _V  /\  I  e.  Fin )  ->  Y  =  ( (Scalar `  (flds  A ) ) X_s ( I  X.  {
(flds  A
) } ) ) )
729, 8, 71sylancr 645 . . . . . 6  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  Y  =  ( (Scalar `  (flds  A
) ) X_s ( I  X.  {
(flds  A
) } ) ) )
7372fveq2d 5724 . . . . 5  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  ( dist `  Y )  =  ( dist `  (
(Scalar `  (flds  A ) ) X_s (
I  X.  { (flds  A ) } ) ) ) )
7473reseq1d 5137 . . . 4  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  (
( dist `  Y )  |`  ( X  X.  X
) )  =  ( ( dist `  (
(Scalar `  (flds  A ) ) X_s (
I  X.  { (flds  A ) } ) ) )  |`  ( X  X.  X
) ) )
7568, 74syl5eq 2479 . . 3  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  D  =  ( ( dist `  ( (Scalar `  (flds  A )
) X_s ( I  X.  {
(flds  A
) } ) ) )  |`  ( X  X.  X ) ) )
7675eleq1d 2501 . 2  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  ( D  e.  ( TotBnd `  X )  <->  ( ( dist `  ( (Scalar `  (flds  A
) ) X_s ( I  X.  {
(flds  A
) } ) ) )  |`  ( X  X.  X ) )  e.  ( TotBnd `  X )
) )
7775eleq1d 2501 . 2  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  ( D  e.  ( Bnd `  X )  <->  ( ( dist `  ( (Scalar `  (flds  A
) ) X_s ( I  X.  {
(flds  A
) } ) ) )  |`  ( X  X.  X ) )  e.  ( Bnd `  X
) ) )
7867, 76, 773bitr4d 277 1  |-  ( ( A  C_  CC  /\  I  e.  Fin )  ->  ( D  e.  ( TotBnd `  X )  <->  D  e.  ( Bnd `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948    C_ wss 3312   {csn 3806    X. cxp 4868    |` cres 4872    o. ccom 4874    Fn wfn 5441   ` cfv 5446  (class class class)co 6073   Fincfn 7101   CCcc 8978    - cmin 9281   abscabs 12029   Basecbs 13459   ↾s cress 13460  Scalarcsca 13522   distcds 13528   X_scprds 13659    ^s cpws 13660   Metcme 16677  ℂfldccnfld 16693   MetSpcmt 18338   TotBndctotbnd 26429   Bndcbnd 26430
This theorem is referenced by:  rrntotbnd  26499
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-ec 6899  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-5 10051  df-6 10052  df-7 10053  df-8 10054  df-9 10055  df-10 10056  df-n0 10212  df-z 10273  df-dec 10373  df-uz 10479  df-q 10565  df-rp 10603  df-xneg 10700  df-xadd 10701  df-xmul 10702  df-icc 10913  df-fz 11034  df-fl 11192  df-seq 11314  df-exp 11373  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-gz 13288  df-struct 13461  df-ndx 13462  df-slot 13463  df-base 13464  df-sets 13465  df-ress 13466  df-plusg 13532  df-mulr 13533  df-starv 13534  df-sca 13535  df-vsca 13536  df-tset 13538  df-ple 13539  df-ds 13541  df-unif 13542  df-hom 13543  df-cco 13544  df-rest 13640  df-topn 13641  df-topgen 13657  df-prds 13661  df-pws 13663  df-psmet 16684  df-xmet 16685  df-met 16686  df-bl 16687  df-mopn 16688  df-cnfld 16694  df-top 16953  df-bases 16955  df-topon 16956  df-topsp 16957  df-xms 18340  df-ms 18341  df-totbnd 26431  df-bnd 26442
  Copyright terms: Public domain W3C validator