MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Unicode version

Theorem cnre 8981
Description: Alias for ax-cnre 8957, for naming consistency. (Contributed by Mario Carneiro, 3-Jan-2013.)
Assertion
Ref Expression
cnre  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, A, y

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 8957 1  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1647    e. wcel 1715   E.wrex 2629  (class class class)co 5981   CCcc 8882   RRcr 8883   _ici 8886    + caddc 8887    x. cmul 8889
This theorem is referenced by:  mulid1  8982  1re  8984  mul02  9137  cnegex  9140  recex  9547  creur  9887  creui  9888  cju  9889  cnref1o  10500  replim  11808  ipasslem11  21852
This theorem was proved from axioms:  ax-cnre 8957
  Copyright terms: Public domain W3C validator