MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Structured version   Unicode version

Theorem cnre 9118
Description: Alias for ax-cnre 9094, for naming consistency. (Contributed by Mario Carneiro, 3-Jan-2013.)
Assertion
Ref Expression
cnre  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, A, y

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 9094 1  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1727   E.wrex 2712  (class class class)co 6110   CCcc 9019   RRcr 9020   _ici 9023    + caddc 9024    x. cmul 9026
This theorem is referenced by:  mulid1  9119  1re  9121  mul02  9275  cnegex  9278  recex  9685  creur  10025  creui  10026  cju  10027  cnref1o  10638  replim  11952  ipasslem11  22372
This theorem was proved from axioms:  ax-cnre 9094
  Copyright terms: Public domain W3C validator