MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnre Unicode version

Theorem cnre 9051
Description: Alias for ax-cnre 9027, for naming consistency. (Contributed by Mario Carneiro, 3-Jan-2013.)
Assertion
Ref Expression
cnre  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, A, y

Proof of Theorem cnre
StepHypRef Expression
1 ax-cnre 9027 1  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   E.wrex 2675  (class class class)co 6048   CCcc 8952   RRcr 8953   _ici 8956    + caddc 8957    x. cmul 8959
This theorem is referenced by:  mulid1  9052  1re  9054  mul02  9208  cnegex  9211  recex  9618  creur  9958  creui  9959  cju  9960  cnref1o  10571  replim  11884  ipasslem11  22302
This theorem was proved from axioms:  ax-cnre 9027
  Copyright terms: Public domain W3C validator