Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnres2 Structured version   Unicode version

Theorem cnres2 26510
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
cnres2.1  |-  X  = 
U. J
cnres2.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnres2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  B ) ) )
Distinct variable groups:    x, J    x, K    x, F    x, X    x, Y    x, A    x, B

Proof of Theorem cnres2
StepHypRef Expression
1 simp3l 986 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  F  e.  ( J  Cn  K
) )
2 simp2l 984 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  A  C_  X )
3 cnres2.1 . . . 4  |-  X  = 
U. J
43cnrest 17380 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
51, 2, 4syl2anc 644 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
6 simp1r 983 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  K  e.  Top )
7 cnres2.2 . . . . 5  |-  Y  = 
U. K
87toptopon 17029 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
96, 8sylib 190 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  K  e.  (TopOn `  Y )
)
10 df-ima 4920 . . . 4  |-  ( F
" A )  =  ran  ( F  |`  A )
11 simp3r 987 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  A. x  e.  A  ( F `  x )  e.  B
)
123, 7cnf 17341 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> Y )
13 ffun 5622 . . . . . . 7  |-  ( F : X --> Y  ->  Fun  F )
141, 12, 133syl 19 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  Fun  F )
15 fdm 5624 . . . . . . . 8  |-  ( F : X --> Y  ->  dom  F  =  X )
161, 12, 153syl 19 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  dom  F  =  X )
172, 16sseqtr4d 3371 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  A  C_ 
dom  F )
18 funimass4 5806 . . . . . 6  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
1914, 17, 18syl2anc 644 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  (
( F " A
)  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B
) )
2011, 19mpbird 225 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  ( F " A )  C_  B )
2110, 20syl5eqssr 3379 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  ran  ( F  |`  A ) 
C_  B )
22 simp2r 985 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  B  C_  Y )
23 cnrest2 17381 . . 3  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  ( F  |`  A ) 
C_  B  /\  B  C_  Y )  ->  (
( F  |`  A )  e.  ( ( Jt  A )  Cn  K )  <-> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  B ) ) ) )
249, 21, 22, 23syl3anc 1185 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  (
( F  |`  A )  e.  ( ( Jt  A )  Cn  K )  <-> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  B ) ) ) )
255, 24mpbid 203 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   A.wral 2711    C_ wss 3306   U.cuni 4039   dom cdm 4907   ran crn 4908    |` cres 4909   "cima 4910   Fun wfun 5477   -->wf 5479   ` cfv 5483  (class class class)co 6110   ↾t crest 13679   Topctop 16989  TopOnctopon 16990    Cn ccn 17319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-recs 6662  df-rdg 6697  df-oadd 6757  df-er 6934  df-map 7049  df-en 7139  df-fin 7142  df-fi 7445  df-rest 13681  df-topgen 13698  df-top 16994  df-bases 16996  df-topon 16997  df-cn 17322
  Copyright terms: Public domain W3C validator