Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnres2 Unicode version

Theorem cnres2 26483
Description: The restriction of a continuous function to a subset is continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
cnres2.1  |-  X  = 
U. J
cnres2.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnres2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  B ) ) )
Distinct variable groups:    x, J    x, K    x, F    x, X    x, Y    x, A    x, B

Proof of Theorem cnres2
StepHypRef Expression
1 simp3l 983 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  F  e.  ( J  Cn  K
) )
2 simp2l 981 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  A  C_  X )
3 cnres2.1 . . . 4  |-  X  = 
U. J
43cnrest 17013 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  A  C_  X )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
51, 2, 4syl2anc 642 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  K ) )
6 simp1r 980 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  K  e.  Top )
7 cnres2.2 . . . . 5  |-  Y  = 
U. K
87toptopon 16671 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
96, 8sylib 188 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  K  e.  (TopOn `  Y )
)
10 df-ima 4702 . . . 4  |-  ( F
" A )  =  ran  ( F  |`  A )
11 simp3r 984 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  A. x  e.  A  ( F `  x )  e.  B
)
123, 7cnf 16976 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> Y )
13 ffun 5391 . . . . . . 7  |-  ( F : X --> Y  ->  Fun  F )
141, 12, 133syl 18 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  Fun  F )
15 fdm 5393 . . . . . . . 8  |-  ( F : X --> Y  ->  dom  F  =  X )
161, 12, 153syl 18 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  dom  F  =  X )
172, 16sseqtr4d 3215 . . . . . 6  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  A  C_ 
dom  F )
18 funimass4 5573 . . . . . 6  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( ( F " A )  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B ) )
1914, 17, 18syl2anc 642 . . . . 5  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  (
( F " A
)  C_  B  <->  A. x  e.  A  ( F `  x )  e.  B
) )
2011, 19mpbird 223 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  ( F " A )  C_  B )
2110, 20syl5eqssr 3223 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  ran  ( F  |`  A ) 
C_  B )
22 simp2r 982 . . 3  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  B  C_  Y )
23 cnrest2 17014 . . 3  |-  ( ( K  e.  (TopOn `  Y )  /\  ran  ( F  |`  A ) 
C_  B  /\  B  C_  Y )  ->  (
( F  |`  A )  e.  ( ( Jt  A )  Cn  K )  <-> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  B ) ) ) )
249, 21, 22, 23syl3anc 1182 . 2  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  (
( F  |`  A )  e.  ( ( Jt  A )  Cn  K )  <-> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  B ) ) ) )
255, 24mpbid 201 1  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( A  C_  X  /\  B  C_  Y )  /\  ( F  e.  ( J  Cn  K
)  /\  A. x  e.  A  ( F `  x )  e.  B
) )  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( Kt  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   U.cuni 3827   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249   -->wf 5251   ` cfv 5255  (class class class)co 5858   ↾t crest 13325   Topctop 16631  TopOnctopon 16632    Cn ccn 16954
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-fin 6867  df-fi 7165  df-rest 13327  df-topgen 13344  df-top 16636  df-bases 16638  df-topon 16639  df-cn 16957
  Copyright terms: Public domain W3C validator