MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrmtop Unicode version

Theorem cnrmtop 17065
Description: A completely normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnrmtop  |-  ( J  e. CNrm  ->  J  e.  Top )

Proof of Theorem cnrmtop
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . 3  |-  U. J  =  U. J
21iscnrm 17051 . 2  |-  ( J  e. CNrm 
<->  ( J  e.  Top  /\ 
A. x  e.  ~P  U. J ( Jt  x )  e.  Nrm ) )
32simplbi 446 1  |-  ( J  e. CNrm  ->  J  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684   A.wral 2543   ~Pcpw 3625   U.cuni 3827  (class class class)co 5858   ↾t crest 13325   Topctop 16631   Nrmcnrm 17038  CNrmccnrm 17039
This theorem is referenced by:  restcnrm  17090
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-cnrm 17046
  Copyright terms: Public domain W3C validator