Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnrmtop Structured version   Unicode version

Theorem cnrmtop 17393
 Description: A completely normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
cnrmtop CNrm

Proof of Theorem cnrmtop
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . 3
21iscnrm 17379 . 2 CNrm t
32simplbi 447 1 CNrm
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1725  wral 2697  cpw 3791  cuni 4007  (class class class)co 6073   ↾t crest 13640  ctop 16950  cnrm 17366  CNrmccnrm 17367 This theorem is referenced by:  restcnrm  17418 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-ov 6076  df-cnrm 17374
 Copyright terms: Public domain W3C validator